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Abstract

Protein-protein interactions are the quintessence of physiological activities, but also partici-

pate in pathological conditions. Amyloid formation, an abnormal protein-protein interaction

process, is a widespread phenomenon in divergent proteins and peptides, resulting in a vari-

ety of aggregation disorders. The complexity of the mechanisms underlying amyloid forma-

tion/amyloidogenicity is a matter of great scientific interest, since their revelation will provide

important insight on principles governing protein misfolding, self-assembly and aggregation.

The implication of more than one protein in the progression of different aggregation disor-

ders, together with the cited synergistic occurrence between amyloidogenic proteins, high-

lights the necessity for a more universal approach, during the study of these proteins. In an

attempt to address this pivotal need we constructed and analyzed the human amyloid inter-

actome, a protein-protein interaction network of amyloidogenic proteins and their experi-

mentally verified interactors. This network assembled known interconnections between

well-characterized amyloidogenic proteins and proteins related to amyloid fibril formation.

The consecutive extended computational analysis revealed significant topological charac-

teristics and unraveled the functional roles of all constituent elements. This study introduces

a detailed protein map of amyloidogenicity that will aid immensely towards separate inter-

vention strategies, specifically targeting sub-networks of significant nodes, in an attempt to

design possible novel therapeutics for aggregation disorders.

Introduction

The cellular and molecular mechanisms that underlie protein misfolding are a matter of major

concern for studies conducted in several scientific centers all over the world. Under denaturing

conditions, a growing number of proteins and peptides that fail to fold properly into their

native structure, are led to the formation of highly ordered, insoluble aggregates, the so-called

amyloid fibrils [1]. Amyloidogenicity, the ability of proteins to self-assemble into these well-

defined fibrillar structures, was initially associated with a group of functionally unrelated pro-

teins [2]. Meanwhile, targeted in vitro experiments revealed that amyloid formation is a uni-

versal phenomenon for polypeptide chains [3] and thus, this concept was the onset of a new
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era in protein misfolding, since a great number of novel amyloidogenic proteins and peptides

were uncovered [4]. Noteworthy, proteins, ranging from bacteria to humans, have been also

found to adopt the same amyloid architecture, as part of their nature [5, 6]. A vast amount of

data, regarding amyloid fibril formation, present both in pathological and physiological condi-

tions, is currently organized into freely available databases [7–11].

Amyloid fibril formation is widely observed and directly linked to the pathology of a range of

widespread human diseases, known as amyloidoses [2]. Amyloidoses are a group of aggregation-

disorders, where full-length amyloidogenic proteins or fragments of larger amyloidogenic pro-

tein precursors, precipitate and deposit, forming amyloid plaques and resulting in organ or tissue

dysfunction [12, 13]. Literature data indicate the implication of more than one amyloidogenic

proteins in the evolution of different amyloidoses. In the case of Senile Systemic Amyloidosis,

co-operation of several Apolipoproteins and ATTR is recorded [14, 15], whereas in Alzheimer’s

disease, apart from Aβ, proteinaceous components such as ACys, ATTR and AGel were found

[16]. To date, the extent to which co-deposition in amyloid plaques has impacted the develop-

ment of amyloidoses between putative unrelated amyloidogenic proteins, remains unclear.

Experimental work over the past ten years has revealed an intriguing, synergistic phenome-

non between amyloidogenic proteins [17]. In vitro experiments highlighted the capacity of Aβ
peptide under specific conditions to seed the polymerization process for α-synuclein [18], Tau

[19] or APrp protein [20]. Similar experiments were performed on several well-characterized

amyloidogenic proteins [21–23]. Further to in vitro assays, animal models demonstrated the

co-deposition of Aβ and Tau proteins [24] or APrp protein [20] in transgenic models. How-

ever, a hidden perspective emerges from this molecular association; amyloid “cross-seeding”

could explain mechanistically the way by which misfolded proteins co-deposite, and propose

possible, attractive candidates for the development of novel therapeutic strategies of aggrega-

tion-related diseases. An apt example towards this direction is the protective role of the amy-

loidogenic ACys in neurodegenerative diseases [25].

The interactomes [26, 27], a systems biology approach, were viable complements to proteo-

mics, in an attempt to look at “the big picture” of protein-protein interactions (PPIs). Gaining

a proper understanding of PPIs contributed to several problems in the field of biological and

medical research [28–30] and served as a reference for further targeted experimentation [31].

Systematic PPI studies are essential, in order to fully comprehend the molecular mechanisms

that trigger human diseases [32, 33]. However, a subject poorly explored so far is deviating

PPIs associated with amyloidogenic/amyloid forming proteins. To date, only a few studies uti-

lized a protein interaction network framework, to obtain information regarding the Alzhei-

mer’s [34–36] or Huntington’s disease [37] and to construct the Amyloid precursor protein

interactome [38–40].

Incomplete knowledge on direct and/or indirect interactions of proteins “prone-to-mis-

fold”, emphasizes the need to focus on the amyloid protein-protein interaction network. Here

we introduce the amyloid interactome, a systematic approach to study “macroscopically”

interactions between previously unrelated human amyloidogenic proteins, associated with dis-

tinct pathologies. Our ultimate goal was to find a common denominator for amyloid forma-

tion, unveil the relationships that govern amyloidogenicity and, subsequently, guide further

experimental studies on protein misfolding.

Materials and methods

Amyloid classification

In order to classify amyloidogenic proteins, all protein-precursors were sorted into three

categories:
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• in vivo amyloid forming protein: the precursor protein, or a peptide segment–derived from

the precursor protein–, self assembles into typical amyloid fibrils, affecting one or more tis-

sues or organs in human. These proteins, from a clinical perspective, give rise to distinct

amyloidoses or play a pathological role in neurodegenerative or endocrine diseases [2].

• in vitro amyloid forming protein: the precursor protein, or commonly a peptide segment–

derived from the precursor protein–, that was reported to self assemble into amyloid-like

fibrils, at experimental level. The amyloidogenicity of proteins comprising this list may be

speculative. Only human precursor proteins are mentioned in this category.

• protein related to amyloid fibril formation: the protein is associated with other in vivo amy-

loid forming proteins, but has no amyloid properties recorded.

Amyloid interactome datasets

Amyloidogenic proteins were firstly obtained from a literature-curated dataset, peer-reviewed

in 2014, by the International Society of Amyloidosis (http://www.amyloidosis.nl/). This list

included human proteins known to self-assemble into typical amyloid fibrils in vivo, along

with intracellular inclusions with known biochemical composition [2]. In addition to this, the

set was enriched with proteins that form amyloid fibrils in vitro [41]. To expand this dataset,

AmyLoad [7] was used as a source of supplementary proteins, characterized to form amyloid-

like fibrils in vitro at experimental level. A final addition included several UniProtKB [42]

entries, gathered elaborately to incorporate reviewed proteins related to amyloid fibrils. Over-

all, the dataset contained 145 non-redundant amyloidogenic protein precursors. S1 Table pro-

vides a detailed catalogue of the aforementioned proteins, mapped to a UniProtKB Accession

Number (AC).

The subsequent construction of the network incorporated only well-characterized in vivo
amyloidogenic proteins, published by Sipe et al. [2], excluding Enfurvitide an anti-retroviral

peptide drug [43], as well as Immunoglobulin Light and Heavy Chains. In the case of Immuno-

globulin chains (e.g. Bence Jones proteins [44]), their variety in human population did not

allow the identification of a unique protein precursor, related to amyloid fibril formation. The

final seed-dataset included 28 proteins, related to in vivo amyloid fibril formation (Table 1),

which were subsequently used for the collection of protein-protein interactions. Protein

nomenclature follows abbreviations established by Sipe et al. [2].

Assembling the protein-protein interaction dataset

UniProtKB ACs were used to query IntAct [45], BioGRID [46] and STRING [47] databases, in

order to extract experimentally verified PPIs for the 28 proteins related to in vivo amyloid fibril

formation (Table 1). This process resulted in three independent PPI datasets, derived from

each database (data not shown). In general protein-protein interaction data contain experi-

mentally verified interactions, along with data derived from prediction methods. These last

data do not have the high reliability often attributed to them and thus, in order to avoid

extracting automatic text-mining results from the plethora of scientific articles related to amy-

loid fibril formation, BioGRID and STRING datasets were excluded from any further analysis.

IntAct PPIs, gather highly curated experimental data, which ensured the quality and consis-

tency of information of our dataset [48].

The interaction data from IntAct (05–2016) were retrieved in a MITAB 2.5 format file [49],

which is appropriate for Perl parsing, without the loss of information regarding PPIs. An edit-

ing process of the file allowed the removal of all the non-human interactions, and additional
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screening was performed to dismiss interactions with chemical compounds. The resulting set

included 355 protein nodes with 762 edges.

In order to create a more robust network, the interactions deposited in IntAct between all

355 proteins were retrieved, whilst an extra processing allowed for the removal of self-loops

and duplicated edges. Thus, a final dataset of 1178 PPIs between 353 human proteins was

obtained, after the exclusion of two protein nodes that had only self interactions (See Results

and discussion).

Visualization and analysis of the network

For the visualization and the analysis of the network we followed the protocol introduced by

Nastou et al. [50]. Cytoscape 3.2.1 [51] was used to manipulate, analyze and visualize our data,

since it ideally provides all the necessary and improved applications for the analysis of biologi-

cal networks [52]. The analysis of simple and complex network topology parameters, was per-

formed by NetworkAnalyzer [53]. The Cytoscape.js JavaScript library [54] was used to create

interactive networks, is available at this link: http://83.212.109.111/amyloid_interactome.

Table 1. The dataset of 28 proteins related to in vivo amyloid fibril formation.

Protein Precursor Name* Abbreviation UniProtKB AC

Amyloid beta A4 protein Aβ P05067

Apolipoprotein A-I AApoAI P02647

Apolipoprotein A-II AApoAII P02652

Apolipoprotein A-IV AApoAIV P06727

Beta-2-microglobulin Aβ2M P61769

Calcitonin ACal P01258

Corneodesmosin ACor Q15517

Cystatin-C ACys P01034

Fibrinogen alpha chain Afib P02671

Galectin 7 AGal P47929

Gelsolin AGel P06396

Insulin AIns P01308

Integral membrane protein 2B ABri/ ADan Q9Y287

Islet Amyloid Polypeptide AIAPP P10997

Kerato-epithelin Aker Q15582

Lactadherin AMed Q08431

Lactoferrin ALac P02788

Leukocyte cell-derived chemotaxin-2 ALECT2 O14960

Lysozyme C Alys P61626

Major prion protein APrP P04156

Natriuretic peptides A AANF P01160

Odontogenic Ameloblast-Associated Protein AOAAP A1E959

Prolactin APro P01236

Pulmonary surfactant associated protein C APSP P11686

Semenogelin-1 ASem1 P04279

Serum amyloid A-1 AA1 P0DJI8

Serum amyloid A-2 AA2 P0DJI9

Transthyretin ATTR P02766

*Protein nomenclature follows abbreviations published by Sipe et al.

doi:10.1371/journal.pone.0173163.t001
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Clustering analysis was performed with clusterMaker [55], utilizing the Markov Clustering

algorithm (MCL), an optimal choice for biological interaction networks assembled from high-

throughput experiments. Different inflation values, between 1.8 and 3.0, were used during the

clustering process (data not shown). The inflation value was finally set to 1.8, as it has been

proved to be the most suitable for biological networks [50, 56], in consistency with the obser-

vation that values above 1.8, result in extreme network fragmentation and the creation of clus-

ters with minor biological significance (See Results and discussion).

BiNGO [57], an application for Cytoscape and WebGestalt [58], an online server, were both

used to perform a functional enrichment analysis of the network. BiNGO determines Gene

Ontology (GO) [59] categories that are statistically overrepresented in a set of proteins in a bio-

logical network (e.g. a cluster), and thus, aids in the detection of functional modules. WebGes-

talt was used to further supplement this analysis, since, besides GO term it can perform

Disease Association and KEGG pathway analysis. The hypergeometric method was used, and

significance was set at an adjusted P-value of<0.05 for BiNGO and<0.01 for WebGestalt

(Benjamini and Hochberg method). Significant categories, driven by only two or less proteins,

were discarded due to the high potential for false signals in such cases. S1 Fig outlines the over-

all study design of the amyloid interactome (S1 Fig).

Results and discussion

The study of the dynamics, structure and function of protein-protein interaction networks

(PPINs) has proven crucial for the understanding of many biological phenomena [60–63].

Hence, network theory is a sophisticated approach to study the puzzling phenomenon of amy-

loidogenicity. The amyloid interactome displays the interacting partners of in vivo amyloid

forming proteins in a flat and detailed protein map (Fig 1). The results presented in this work,

combine interactions from specialized networks of protein aggregation [34, 35, 37–40, 64] and

eventually, assemble a new set of functionally unconnected proteins into a network that would

possibly fill the missing pieces of protein aggregation and shed light towards the exploitation

of novel disease protein-targets.

Construction of the amyloid interactome

In an effort to build the human amyloid interactome, in vivo amyloid-forming proteins were

obtained from a peer-review library, published by Sipe et al. [2] (Table 1). Overall the protein-

protein interaction network contains 353 protein nodes and 1178 protein-protein interaction

edges, between them (Fig 1). Surprisingly, among the proteins listed in the network, 23 amyloi-

dogenic proteins construct a giant connected component (Fig 1, red nodes), whereas 13 pro-

teins (Fig 1, yellow nodes), recorded as in vitro amyloid-forming proteins and proteins related

to amyloid fibril formation (S1 Table), are also identified. A list of these significant proteins is

available in Table 2. Among them, proteins forming intracellular inclusions bodies were

reported (Tau, Actin, NACP, HD) [2], while proteins, found as co-deposits in the Alzheimer’s

disease, emerged (Apo-E, PS-1, PS-2, Tau) [65].

Notably, APro, an anterior pituitary hormone known to self-assemble into amyloid fibrils

[66], did not manage to join the giant connected component created by the other 23 amyloido-

genic proteins in the network, whilst the only interactor identified was the prolactin receptor

(Fig 1, right). This “detachment” of an important hormone together with the absence of

AIAPP should receive a renewed emphasis [67]. Namely, for AIAPP no experimental verified

partners were recorded, since only speculative approaches attempted to describe possible

interaction partners [68]. AA1 and AA2 proteins, which can form amyloid fibrils after partial

proteolysis [69], are important components of the High Density Lipoprotein (HDL) complex
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[70]. However, direct interactions of AA1 and AA2 are not recorded in IntAct. Therefore, at

first glance, the network which has emerged designates a correlation among the majority of

otherwise unrelated in vivo and also in vitro amyloidogenic proteins, along with proteins

related to amyloid fibril formation.

Network analysis based on graph theory

One of the most fruitful approaches to extract relative biological conclusions from the struc-

ture of the amyloid interactome is to computationally calculate its topological parameters.

Fig 1. The amyloid interactome. Interaction data for the creation of this network were gathered from the publicly available database IntAct [45] and

Cytoscape [51] was used as a visualization tool (Interactive network available at http://83.212.109.111/amyloid_interactome). The network consists

of 353 nodes and 1178 edges. Proteins are depicted as nodes and interactions as edges. Red-coloured nodes represent known in vivo

amyloidogenic proteins, whereas yellow-coloured nodes represent in vitro amyloid-forming proteins or proteins related to amyloid fibril formation (see

also Tables 1 and 2). Green-coloured nodes are proteins, listed as other interaction partners. Hubs and bottlenecks are depicted as triangles (▲) and

squares (■), respectively. Protein-nodes, which are both hubs and bottlenecks are shown as diamonds (◆). Important molecular chaperones are

highlighted with a blue outline.

doi:10.1371/journal.pone.0173163.g001
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Simple topology parameters. An assessment of simple topology parameters revealed

intriguing information. A random graph with the same number of nodes and edges has been

used as a “null model” to draw conclusions regarding certain topological traits of our network.

In general, small-world graphs describe networks, where nodes can be reached from each

other by traversing a small number of edges, and, thus their average path length is small and

their clustering coefficient (transitivity) is high, compared to a random graph [71]. For the

amyloid interactome, both the clustering coefficient (CC = 0.187) and the characteristic path

length (CPL = 3.083) are higher and lower, respectively, than those of the corresponding ran-

dom graph (CC = 0.003, CPL = 3.290), signifying that a small number of steps is needed, for

one amyloidogenic protein to reach another. For example, Aβ can “reach” ATTR, by crossing

AApoAI in only two (2) steps, verifying experimental data which pinpoint ATTR as a promis-

ing biomarker of the Alzheimer’s disease [72] (Fig 1, top). Furthermore, measuring the density

of our network (0.019), a value lower than 0.1 was recorded, a result in accordance with other

sparsely connected biological networks [73]. Since our network complies with all these criteria,

we can safely conclude that it has small-world properties [74].

Complex topology parameters. In addition to having small-world features, biological

networks are commonly scale-free [75]. The most important parameter to gain an insight on

the scale-free nature of a biological network is the node degree distribution [76]. In our case,

the distribution is of the following form:

PðkÞ ¼ 117:86k� 1:236 ð1Þ

decaying as a power law (P(k) ~k-γ). According to this finding, the network has scale-free

properties [76] and specifically it consists of a few hubs (Fig 1, triangles and diamonds) con-

nected with multiple nodes (S2A Fig). More importantly, hubs (S2 Table) seem to play a

crucial role in our network, since the degree exponent (γ) is lower than 2 [77]. Generally, net-

works enriched with hubs, are robust against random node deletions [78, 79] as these distur-

bances do not affect the average path length severely (S2D Fig). Nevertheless, the removal of

Table 2. The dataset of 13 proteins related to amyloid fibril formation.

Protein Precursor Name* Abbreviation UniProt AC

In vitro amyloid-forming protein precursors

alpha beta Crystallin (ABC) HspB5 P02511

alpha-Synuclein NACP P37840

Apolipoprotein C-II Apo-CII P02655

Caspase-3 precursor CASP-3 P42574

Cystic fibrosis transmembrane conductance regulator CFTR P13569

Huntingtin (Polyq expanded) HD P42858

Presenilin 1 PS-1 P49768

Presenilin 2 PS-2 P49810

Spectrin SH3 Spectrin Q13813

Tau Tau P10636

Proteins related to amyloid fibril formation

Actin, cytoplasmic 1 Actin P60709

Apolipoprotein E Apo-E P02649

Ataxin 1 Ataxin-1 P54253

*Protein nomenclature follows the most cited abbreviations in literature.

doi:10.1371/journal.pone.0173163.t002
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particular hubs, such as the Aβ or APrP (Fig 1), can drastically alter the average path length

and so, our network can be generally addressed as ‘robust yet fragile’ [80].

As shown in Fig 1, several proteins act as “bridges”, immediately connecting many, other-

wise distantly or unconnected proteins in the network, thus, increasing the network’s inter-

connectivity (Fig 1, squares and diamonds). The influence of these “bridging” proteins is

expressed with high betweeness centrality values, indicating their role as bottlenecks, key con-

nectors for the communication of other important proteins in the interactome, like hubs [81,

82] (S2B Fig). S3 Table introduces the top 20 bottlenecks of the interactome.

Among the topological parameters mentioned above, node degree, and betweenness cen-

trality distributions were carefully studied. Fifteen protein-nodes were identified as both

hubs and bottlenecks, whereas 5 proteins have high degree (hubs) and 5 proteins have high

betweenness centrality (bottlenecks). Impressively, 6 out of the 23 in vivo amyloidogenic pro-

teins have a major contribution on the interactome, demonstrating their crucial role in the

network (S2 and S3 Tables). Additionally, the amyloid interactome has an average clustering

coefficient distribution, that follows approximately the scaling law C(k) ~ k-1 (S2C Fig), indi-

cating the ability of this network to form functional modules (clusters) with biological signifi-

cance (See Clustering Analysis) [83]. Overall, the network analysis based on graph theory

revealed that the amyloid interactome appears to be enriched with interactions between amy-

loidogenic proteins.

Finally, in order to further examine the role of selected and random perturbations in the

stability of the amyloid interactome, we performed a “lethality” test [78]. A multistep proce-

dure included the gradual removal of proteins, randomly (“failure”) and in descending order

of node degree and betweeness centrality (“attacks”). The rapid increase in the network’s char-

acteristic path length (CPL) during the targeted “attacks”, in contrast to the slow increase dur-

ing its “failure”, puts emphasis on the significance of the removed proteins (S2D Fig).

The above analysis gave us valuable information regarding central components of the net-

work (hubs and bottlenecks), ranging from single proteins to entire modules (S2 and S3

Tables). However, due to inevitable technical biases present in interaction data [84], all results

produced from such analyses should be carefully examined. Aβ publication biases, for exam-

ple, may lead to the overestimation of the role of certain constituents of the network, in

expense of others. Graph theory based analysis combined with other validation approaches

were utilized, in our case, to further address the aforementioned issues.

The amyloid interactome unravels interconnections between

amyloidogenic proteins

In general, it is believed that disease-related proteins in a protein-protein interaction network

are more interconnected than non-disease proteins [85], a claim in accordance with our find-

ings. Fig 1 deciphers the complex interactions governing amyloidogenicity, by interconnecting

well-characterized amyloidogenic proteins (red nodes) with a heterogeneous collection of pro-

teins related to protein aggregation (yellow nodes). Nevertheless, it is possible to understand

that not all proteins on the interactome were directly related, meaning that indirect links may

occur. Consequently, amyloid forming proteins, such us Tau, NACP and HD, which were

excluded from our initial seed-dataset (See Materials and methods), were ultimately retrieved

during the interactome construction process (S3C Fig).

Impressively, the interaction network consolidates a number of human proteins, which

have been shown to form amyloids in vitro. Frequently, in vitro aggregation assays are oriented

towards protein segments, responsible to drive proteins from their native structure to the amy-

loid state, in place of full-length proteins [86]. Evidence at experimental level prove that

The amyloid interactome
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“aggregation-prone” segments are indeed sufficient to lure a protein precursor into forming

typical amyloid fibrils, and thus, these full-length protein precursors are characterized as “amy-

loidogenic” [87]. Interconnections between in vivo (red nodes) and in vitro amyloid forming

proteins or protein segments (HspB5, Apo-CII, PS-1, PS-2, Spectrin, See Table 2) may extend

biological expectations, related to protein-aggregation (S3A Fig).

Looking deeper into the crowded topography of the amyloid interactome, a great variety of

“amyloid-binding proteins” is included. These amyloid specific molecules are basically a list of

divergent proteins, capable of interacting with assemblies, derived from amyloidogenic pro-

teins [88–90]. A broad range of Aβ contributors, for example, includes molecular chaperones

or co-chaperones, apolipoproteins and other amyloid-forming proteins, enhanced with vari-

ous functional characteristics. Since cells have adapted a mechanism to avoid the accumulation

of incorrectly folded proteins, the Gene Ontology (GO) term [59] enrichment analysis in the

entire interactome revealed the overrepresentation of GO terms regarding regulatory mecha-

nisms (positive or negative regulation), while the most important GO term recorded is

“response to stress” (GO ID: 6950) (S4 Table and S4A Fig). In particular, knowledge of the bio-

logical role of non-amyloidogenic hubs and bottlenecks in our interactome (S3B Fig), is gath-

ered and shown in S5 Table. As expected, proteins highly interconnected are involved in signal

transduction and in several metabolic processes. Impressively, though, a vast amount of topo-

logically important proteins is related with stress pathways, highlighting possible novel disease

protein targets, mediating amyloidogenicity (See Rational Design of Protein Inhibitors).

The most abundant interaction detected is the one between amyloidogenic proteins and

well-known regulatory proteins, the so-called chaperones (Fig 1). As Fig 1 illustrates, chaper-

ones together with co-chaperones dynamically participate in the interactome (nodes with blue

border). This finding was, more or less, an expected phenomenon, since molecular chaperones

are molecules dedicated to suppress amyloid formation [91, 92] and usually have many inter-

actors [93]. The expert review, by Yerbury & Kumita, presents an extended group of amyloid-

specific chaperones and discusses their implications [94]. Our interaction network, apart from

validating existing data, demonstrates that chaperones exhibit high connectivity and at the

same time high betweeness centrality, meaning that a sudden removal of such a node would

result to the elimination of many important interactions in the network (Fig 1 and S2D Fig).

These findings are in accordance with previously published interaction networks, associated

with aging [95] or stress [96], where chaperones participate as special constituents.

Clustering and functional enrichment analysis

Clustering analysis. The core of our study is the Amyloid Interactome, an interaction net-

work represented as a large interconnected network with embedded functional sub-networks.

Consequently, in order to further evaluate functional modules, a network clustering analysis

was performed, utilizing the MCL algorithm [97]. The network was divided in 20 clusters, 11

of which composed of three or more nodes (Fig 2), while 9 contained only two proteins and

were not further analyzed. The inflation value of 1.8 allowed the creation of compact clusters,

preventing the network’s fragmentation.

The most important cluster, retrieved after the MCL implementation, consists of 186 pro-

tein-nodes (Fig 2, cluster 1). The results revealed the strong association between 7 in vivo amy-

loidogenic proteins (Fig 2, cluster 1—red nodes) and 13 proteins related to amyloid fibril

formation (Fig 2, cluster 1—yellow nodes). Impressively, the full list of proteins included in

the amyloid interactome and recorded as in vitro amyloid forming proteins or proteins related

to amyloid fibril formation (Table 2), is solidly represented in this first cluster. This finding

The amyloid interactome
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Fig 2. Clustering analysis of the amyloid interactome. The 11 clusters with 3 or more nodes of the amyloid interaction network,

derived utilizing the MCL algorithm [97]. Cytoscape [51] was used as a visualization tool. The visual legend summarizes the shortcuts of

node colour and node shape (See also Fig 1). The highly connected subnetwork of the first cluster within the amyloid interactome reveals

the strong affinity between 7 amyloidogenic proteins (cluster 1—red nodes) and the integral representation of the proteins presented in

Table 2 (cluster 1—yellow nodes) (Interactive cluster subnetworks available at http://83.212.109.111/amyloid_interactome).

doi:10.1371/journal.pone.0173163.g002
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further validates the strong interconnection observed in our initial interaction network (Fig 1),

implying that all these 13 proteins are likely important determinants of protein aggregation.

Notably, the most important subgroup of our interaction network (Fig 2, cluster 1) includes

direct or indirect well-known amyloidogenic interaction partners of Aβ. Namely, amyloid

forming Apolipoproteins (AApoAI, AApoAII) are catalytic binding partners [98], whereas

ACys [16, 99] and AGel [100, 101] prevent Aβ from accumulation. Moreover, Aβ cooperated

with 9 (HspB5, Spectrin, Actin, PS-1, PS-2, ApoE, CASP-3, Tau, NACP) out of the 13 proteins

of Table 2, both in the entire network and the fragmented network, a finding that might stimu-

late new ideas about the nature of Aβ interactions.

The amyloidogenic proteins, APrP and AKer are located in the second cluster, together

with Clusterin (Fig 2, cluster 2—node with blue border), an extracellular chaperone, present in

disease-associated extracellular amyloid deposits [102] and a proteasome functional subunit

(Proteasome subunit alpha type-3). The absence of Clusterin from cluster 1, though, has

prompted increasing interest, since the well-studied molecular chaperone is an existing protein

target for the Alzheimer’s disease and so, we would expect a strong correlation with Aβ [103].

Nevertheless, MCL algorithm results point toward a possible relationship between Clusterin

and Aker or APrp, a finding that remains to be elucidated. Additional proteins of this cluster

are associated with transcriptional regulation and pre-mRNA splicing, since the over-expres-

sion of prions influences normal cellular proteins, participating in apoptosis or cell signaling

[104]. Transthyretin, a potent inhibitor of Aβ [72], created a separate cluster together with

Small ubiquitin-related modifier 3. The remaining complexes, consist of less than 7 nodes,

where, with the exception of cluster 4, each one contains only one amyloidogenic protein

(Fig 2, clusters 4–11).

Functional enrichment analysis. Functional interpretation of the data, derived from each

cluster, was performed using BiNGO [57] and thus, statistically significant GO terms [59] were

obtained for three functional categories (biological process, molecular function and cellular

component). Due to the excess of information derived from this analysis, terms with great sta-

tistical and biological significance were manually selected to functionally characterize each

cluster. Importantly, as mentioned before, similar subcategories with the entire network analy-

sis resulted from the cluster functional analysis, and “response to stress” was the most signifi-

cant function in the majority of the clusters (details of cluster 1 GO enrichment are shown in

S6 Table). Therefore, it is apparent from all the above results that the amyloid interaction map

locates in “spatial proximity” proteins related to stress (chaperones, co-chaperones and amy-

loidogenic proteins), which arise as a response to pathological conditions [88] (S4B Fig). Nev-

ertheless, biological systems are dynamic, meaning that a complex succession of events may

occur over the course of time, in contrast with a protein-protein interaction network. There-

fore, certain events described on the amyloid interactome are based on a static system and

thus, this analysis could produce certain artificial results that should be addressed carefully to

draw biologically significant conclusions.

Pathway analysis and disease association. KEGG pathway analysis was performed, in an

attempt to detect common metabolic pathways, in which the network’s proteins participate. A

complex series of signaling pathways including the MAPK signaling pathway, B-cell and T-cell

signaling pathways and the insulin signaling pathway are associated with the network’s pro-

teins. Additional disease association analysis, conducted with WebGestalt [105], revealed

significant associated disorders for every cluster. In the first cluster (Fig 2), for example, Tauo-

pathies, Dementia and Alzheimer’s disease constitute the most significant group of patholo-

gies. Pinpointing the components of such disease pathways is a promising perspective and

thus, a detailed analysis and a novel joined network of diseases related to amyloidoses is cur-

rently being under construction (research article in preparation).
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It is important to note that a delicate feature of our interactome, and its subsequent frag-

mentation, is the vast amount of experimental data on Aβ peptide polymerization, owing to

the worldwide prevalence of the Alzheimer’s disease and the shortage of data on other less

studied amyloidogenic proteins.

Rational design of protein inhibitors

Moving a step forward it seems interesting to investigate the correlation between biological

factors, participating in the amyloid interactome that could influence amyloidogenicity. To

determine whether significant elements of the amyloid interactome might indicate common

properties of good candidates to be targeted by therapy, hubs and bottlenecks were thoroughly

examined (Fig 3).

An important group of proteins, dynamically participating in the interactome, is the group

of molecular chaperones (S3D Fig). Their active role in controlling protein aggregation and

their close relation to amyloidogenic proteins is the “hidden weapon" of the protein machinery

and the reason why 4 out of 9 chaperones were recorded as hubs and bottlenecks in the amy-

loid interactome (Fig 1). The transient nature of real-time interactions between chaperones

and their partners, though, results in unrealistic low connectivity, in signaling and mitochon-

drial protein–protein interaction networks [106].

Fig 3. Subnetworks of molecular chaperones participating in the amyloid interactome. 3 important subnetworks were isolated from the entire

amyloid interactome: (A) Subnetwork of Hsp90 co-chaperone Cdc37, Hsc70-interacting protein, Hsp 90-alpha, Hsc71 and their first neighbors, (B)

Subnetwork of Serum albumin and Hsc70-interacting protein and their first neighbors and (C) Subnetwork of Clusterin, Large proline-rich protein BAG6

and their first neighbors. The aforementioned proteins, having chaperone or co-chaperone activity, were found to play a pivotal role in the integrity of the

interactome (See section Network Analysis Based on Graph Theory). A highly selective and direct correlation of Serum albumin and 6 amyloidogenic

proteins was observed (B), whereas indirect interactions between Serum albumin and 2 amyloidogenic proteins were recorded (A). Hsc70-interacting

protein is a significant element of the interactome, since it conciliates interactions between Apolipoproteins and ACys or ATTR (A,B). Clusterin

synergistically with Large proline-rich protein BAG6 interferes with APrp and Aβ2M (C). The finding that more than one chaperones mediate the

interconnection between different amyloidogenic proteins deserves further investigation.

doi:10.1371/journal.pone.0173163.g003
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Contradictory theories on whether chaperones are “guilty or innocent” during the protein

aggregation process provoke an intense debate. In particular, several experimental studies

revealed the co-localization of chaperones with various amyloidogenic proteins [107, 108],

whereas other experimental work reported on the inhibitory properties of chaperones, when

added during fibrillation [102, 109, 110]. Impressively, molecular chaperones have been

shown to inhibit the formation of amyloid fibrils even when present at extremely sub-stoichio-

metric ratios, comparing to amyloid forming protein [111]. Fig 3 illustrates the interaction

partners of selected molecular chaperones, prospect for the rational design of aggregation

inhibitors. All characteristic path lengths for the subnetworks shown in Fig 3 are reduced

approximately by one degree, in comparison with those of the entire amyloid interactome

(CPL ~ 2.4). This result quantifies the great importance of chaperones as mediators of commu-

nication between amyloidogenic proteins.

Plasma proteins, on the other hand, is another promising group of protein-targets, consid-

ering that it includes proteins with many interaction partners, which have a wide range of

physiological functions. Noteworthy, this group of proteins contains significant amyloidogenic

components of the amyloid interactome, such as ATTR and Aβ2M. Among them, Serum albu-

min is a co-chaperone with significant topological features in the amyloid interactome, since it

acts both as a hub and a bottleneck (Fig 3A and 3B). As Fig 3 illustrates, Serum albumin inter-

acts directly or indirectly with in vivo amyloidogenic proteins and proteins related to amyloid

fibril formation (See Fig 3 legend for details).

Normally, Albumin is a prevalent transporter of human plasma, known to carry a wide

range of molecules, but under in vitro conditions was found to self-assemble into typical amy-

loid fibrils [112]. Nevertheless, it is worth mentioning that Serum Albumin was absent from

our initial non-redundant list of amyloidogenic proteins (S1 Table), since such an entry was

not found recorded neither in our literature sources nor deposited in AmyLoad or UniProtKB.

Despite the “aggregation-prone” nature of Albumin, the presence of this plasma protein pro-

motes neuronal survival [113] or inhibits amyloid fibrillation in in vitro designed experiments

[114], while according to the proteomic analysis, conducted by Hye et al., is an eligible bio-

marker for the Alzheimer’s Disease [115]. Therefore, because of its central role in the interac-

tome (Fig 3A and 3B) and the previously recorded features as a potent inhibitor of fibrillation,

it seems that human plasma Albumin is a challenging molecule, which might stimulate new

ideas about the design of anti-amyloid drugs.

From the above discussion, we pinpointed hubs as the most competent candidates regard-

ing the therapeutic intervention of amyloidogenicity. Opposing studies, though, suggest that

proteins with low connectivity would be more efficient therapeutic targets for neurodegenera-

tive diseases, since hubs are generally considered as “elegant features” for the robustness of an

interactome [35]. Therefore, our computational approach should be followed by a variety of in
vitro, cellular and in vivo experiments, in order to verify our speculations.

Conclusions

Given the complexity of the molecular mechanisms driving amyloid fibrillation, a frequently

used strategy is directed towards studying amyloidogenicity at molecular level, although, this

approach is not always feasible, due to the dynamics of protein misfolding. In this study, we

attempted to answer the crucial question of amyloidogenicity, following the principles of sys-

tems biology, by assembling a group of “miscellaneous” proteins into a common biological

interaction network. The amyloid interactome illustrates a united interaction network of criti-

cal hypotheses, regarding the irregular protein aggregation, since it represents an integrated

protein map of in vivo amyloidogenic proteins, together with in vitro amyloid forming proteins
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or proteins related to amyloid fibril formation. The amyloidogenic and non-amyloidogenic

elements of the amyloid interactome eventually come together to form a complex “tapestry” of

protein-protein interactions. Based on the complex network theory analysis, this network

exhibits topological properties that are similar to other significant interaction networks. Sur-

prisingly, our approach, apart from validating all previously experimentally verified direct or

indirect protein interactions, allowed us to stress the importance of novel protein targets. Our

integrated project has raised plentiful questions and could serve as the driving force to guide

the experimental process in the challenging field of protein aggregation, even at the molecular

level. Nevertheless, it should be addressed that the amyloid interactome was built based on the

current knowledge of protein-protein interactions, meaning that there is a “publication bias”

between over and understudied amyloidogenic proteins. Individual proteins should be care-

fully validated, utilizing the appropriate methodology, in order to enhance the significance of

our observations. Therefore, the strength of the amyloid interactome lies in the perspective to

identify key mediators of amyloidogenicity that could be targeted therapeutically.

Supporting information

S1 Fig. Study design workflow of the amyloid interactome. An overview of the basic proto-

col, used to create and analyze the amyloid interactome.

(TIF)

S2 Fig. Distributions for three complex topological parameters of the amyloid interactome

and results from “Lethality Testing”. (A) Node degree distribution in log-log plot. The red

line shows that the distribution decays as a power law (P(k) = 117.86k-1.236). Nodes on the

upper left corner of the chart (high node degree) are hubs in the amyloid interactome. (B)

Betweenness centrality distribution with the horizontal axis in a logarithmic scale. Nodes on

the right quarter of the chart (high betweeness centrality) are bottlenecks in the network. (C)

Average clustering coefficient distribution. The red line shows that it follows approximately

the scaling law (C(k) = 0.816k-0.647), designating the network’s ability to form clusters. (D)

Lethality testing. This chart shows the effect of the gradual removal of random nodes (blue

circles) and the gradual removal of hubs (black triangles) and bottlenecks (grey squares), on

the Characteristic Path Length (CPL) of the network (For detailed discussion please refer to

Results and discussion section).

(TIF)

S3 Fig. Detailed features of the amyloid interactome. (A) Interactions between in vivo amy-

loidogenic proteins (red-coloured nodes) and in vitro amyloid forming proteins or proteins

related to amyloid fibril formation (yellow-coloured nodes). (B) Yellow-coloured nodes repre-

sent in vitro amyloid forming proteins or proteins related to amyloid fibril formation and are a

delicate feature of the amyloid interactome. (C) Representation of the key role of non-amyloi-

dogenic hubs and bottlenecks in the amyloid interactome. Triangles are proteins acting as

hubs, squares are proteins acting as bottlenecks and diamonds are proteins acting as both. (D)

Nodes with blue borders represent proteins characterized as chaperones or co-chaperones

(Interactive network available at http://83.212.109.111/amyloid_interactome).

(TIF)

S4 Fig. GO functional analysis of enriched terms in the biological process ontology for the

entire amyloid interactome and the first cluster. Functionally grouped networks of enriched

categories were generated both for the amyloid interactome (A) and cluster 1 (B). GO terms

are represented as nodes. The colour gradient of each circle corresponds to the p-value of the

associated GO term. White-coloured nodes are not statistically significant nodes, but are
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parent nodes of statistically significant GO terms. Different node sizes are indicative of varying

frequencies of the proteins correlated with each GO term (See S4 and S6 Tables).

(TIF)

S1 Table. The non-redundant, detailed catalogue of in vivo and in vitro amyloidogenic pro-

teins or peptide fragments or proteins related to amyloid fibril formation. This extended

list of proteins includes proteins known to self-assemble into typical amyloid fibrils in vivo,

along with intracellular inclusions with known biochemical composition, published by Sipe

et al. in 2014 [2]. In addition to this, the list includes proteins which form amyloid fibrils in
vitro [45], protein segments obtained from AmyLoad [5] and finally, UniProtKB entries [46]

of proteins related to amyloid fibril formation. A UniProtKB Accession Number is provided

for each protein. The original source library of each protein is tagged with a cross (+). The Dig-

ital Object Identifier (DOI) code is provided, when it is available (See Materials and methods).

(PDF)

S2 Table. The top 20 hubs of the amyloid interactome. The 20 proteins with the highest

node degrees are considered as hubs in the amyloid interactome. 6 of these proteins belong to

the dataset of the amyloidogenic proteins, described in S1 Table, whilst the rest of the hubs

exhibit numerous functions, acting mainly as chaperones, signal transducers or structural con-

stituent of the cell (See Results and discussion).

(PDF)

S3 Table. The top 20 bottlenecks of the amyloid interactome. The 20 proteins with the high-

est betweeness centralities are considered bottlenecks in the amyloid interactome. 6 of these

proteins belong to the dataset of the amyloidogenic proteins, described in S1 Table. 15 bottle-

necks exhibit high node degree values and are also considered as hubs in this network (S2

Table).

(PDF)

S4 Table. Amyloid interactome GO term enrichment. A p-value of 10E-14 was set as a

gathering threshold for Biological Process and Cellular Component, whereas a value of

10E-8 was set as threshold for Molecular Function. Proteins of the entire amyloid interac-

tome were subjected to a GO term enrichment analysis using BiNGO [56]. The UniProtKB

ACs of proteins that are characterized by overrepresented GO terms in the entire amyloid

interactome are given in this table, along with their number and their frequency in the net-

work. The adjusted p-value suggests the importance of these GO terms in the proteins of the

amyloid interactome.

(PDF)

S5 Table. GO Terms enrichment of the 18 important, non-amyloidogenic hubs and bottle-

necks identified on the amyloid interactome. The majority of proteins, which are character-

ised as hubs and bottlenecks are involved in signal transduction and in several metabolic

processes. The most abundant GO term, though, is response to stress, in accordance with the

most represented group of the amyloid interactome (See S4 Table).

(PDF)

S6 Table. Enriched GO categories of Cluster 1, derived from the amyloid interactome.

Enriched categories for Biological Process are those with p<10E-12, for Cellular Compo-

nent with p<10E-14 and for Molecular Function with p<10E-8. Proteins of the first cluster

of the amyloid interactome were subjected to a GO term enrichment analysis using BiNGO

[56]. The UniProtKB ACs of proteins that are characterized by overrepresented GO terms in

this cluster are given in this table, along with their number and their frequency in the network.
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The adjusted p-value suggests the importance of these GO terms in the proteins of cluster 1.

(PDF)

S1 File. Web application user guide. Detailed description of the structure of the interactive

Amyloid Interactome–Web application is available at http://83.212.109.111/amyloid_

interactome.

(PDF)
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