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SHORT COMMUNICATION

An hierarchical artificial neural network system for the
classification of transmembrane proteins
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This work presents a simple artificial neural network which
classifies proteins into two classes from their sequences
alone: the membrane protein class and the non-membrane
protein class. This may be important in the functional
assignment and analysis of open reading frames (ORF’s)
identified in complete genomes and, especially, those ORF’s
that correspond to proteins with unknown function. The
network described here has a simple hierarchical feed-
forward topology and a limited number of neurons which
makes it very fast. By using only information contained in
11 protein sequences, the method was able to identify,
with 100% accuracy, all membrane proteins with reliable
topologies collected from several papers in the literature.
Applied to a test set of 995 globular, water-soluble proteins,
the neural network classified falsely 23 of them in the
membrane protein class (97.7% of correct assignment).
The method was also applied to the complete SWISS-
PROT database with considerable success and on ORF’s
of several complete genomes. The neural network developed
was associated with the PRED-TMR algorithm (Pasquier,C.,
Promponas,V.J., Palaios,G.A., Hamodrakas,J.S. and
Hamodrakas,S.J., 1999) in a new application package called
PRED-TMR2. A WWW server running the PRED-TMR2
software is available at http://o2.db.uoa.gr/PRED-TMR2
Keywords: membrane proteins/neural network/prediction/pro-
tein structure

Introduction

The number of protein sequences stored in public databases
(78 197 in SWISS-PROT release 37, 178 773 in TrEMBL;
Bairoch and Apweiler, 1998) is considerably larger than that
of known protein structures (9129 in PDB; Sussmanet al.,
1998): a gap that will continue to increase, as the experimental
determination of the three-dimensional structure of a protein
is a time consuming process compared with the time needed
for the determination of the protein sequence. This is especially
true for transmembrane proteins which are difficult to solve
by X-ray crystallography.

Usually, the structure of a new protein having homologies
above a certain level to another sequence of known structure
can be predicted with reasonable accuracy (Persson and Argos,
1994; Rostet al., 1994, 1995). However, the majority do not
belong to this ideal case. For this set of proteins, prediction
methods that do not depend on sequence alignments but using
solely information contained in a sequence itself are necessary.

A number of methods or algorithms designed to locate the
transmembrane regions in proteins, without the need for
multiple-sequence alignment information, have been

© Oxford University Press 631

developed—for example, von Heijne (1992), Cserzoet al.
(1997) and Pasquieret al. (1999), to mention just a few.
However, these algorithms focus on the localization of trans-
membrane segments in known integral membrane proteins and
are not suited to the discrimination of membrane proteins from
non-membrane proteins.

Recently, we have published the PRED-TMR method in an
attempt to improve the fine localization of transmembrane
segments, by coupling a hydrophobicity analysis with a detec-
tion of potential termini (starts and ends) of transmembrane
regions (Pasquieret al., 1999). Now we have extended this
application with a pre-processing stage, represented by an
artificial neural network, which attempts to classify proteins
into either membrane or non-membrane proteins.

Several applications of neural networks to the prediction of
transmembrane segments or secondary structure prediction can
be found in the literature (Reczko, 1993; Rostet al., 1994;
Fariselli and Casadio, 1996; Aloyet al., 1997; Diederichs
et al., 1998). Most of them use a local encoding for each
amino acid and produce as output a classification for the amino
acid in the middle of the input window. When an hierarchical
feed-forward topology is used (the connectivity graph contains
no loop), each network output is independent of the results
obtained by previous processing. This causes little or no
problem when the output of the network consists of continuous
values (coordinates for example; Diederichset al., 1998).
However, when a threshold parameter is used for the choice
of binary output, the absence of correlation between the
possible structure of adjacent residues frequently results in
incoherent topologies (a transmembrane segment composed of
only one residue for example). This problem can be solved by
designing recurrent neural networks which use additional
information obtained with the processing of previous patterns
(Reczko, 1993) or by building a system of cascading neural
networks (Rostet al., 1994; Fariselli and Casadio, 1996).
Nevertheless, these techniques are not appropriate for the
correct classification between membrane and non-membrane
proteins because they are too focused on one-residue topology
prediction.

This paper presents an artificial neural network which does
not predict the exact location of transmembrane segments, but
produces instead a unique output showing whether an analyzed
part of a sequence is related to a transmembrane region or not.

Materials and methods

Information gathering
Eleven proteins with known topologies were used for the
training of the network: six transmembrane proteins containing
a total of 19 transmembrane segments [CB21_PEA,
GPT_GRILO, LECH_HUMAN, FCE2_HUMAN (SWISS-
PROT codes), 1PRCH, 1PRCL (NRL3D codes)], two fibrous
proteins [CH16_DROME and ELS_CHICK (SWISS-PROT
codes)] and three globular ones [ADH1_CHICK, ANGI_CH-
ICK, CONA_CANEN (SWISS-PROT codes)]. The sequences
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used, and other information concerning the application, are
available on our web site at http://o2.db.uoa.gr/PRED-TMR2/
Results/).

Five different test data sets of transmembrane proteins with
reliable topologies were collected from the literature. Test set
1 includes 64 sequences from the set of Rostet al. (1995)
the sequences 2MLT, GLRA_RAT, GPLB_HUMAN,
IGGB_STRSP and PT2M_ECOLI, which were not found in
the public databases, were not used), sets 2 and 3 of 48 and
83 proteins respectively were taken from Rostet al. (1996),
set 4 comprises the 44 sequences used by Cserzoet al. (1997)
and set 5 is composed of 92 sequences from Fariselli and
Casadio (1996).

A test data set of globular proteins was extracted from the
Protein Data Bank (PDB), using the list of non-homologous
sequences of PDBSELECT (Hobohmet al., 1994). The 25%
threshold list was used, excluding entries of membrane- and
lipid-associated proteins (1AIJ, 1ALY, 1AR1, 1ATY, 1BEH,
1BHA, 1BQU, 1BXM, 1FTS, 1IXH, 1JDW, 1KZU, 1LGH,
1LML, 1NKL, 1OCC, 1PRC, 1QCR, 1SQC, 1TLE, 13DT,
1YST, 2CPS, 2MPR, 2OMF, 2POR, 7AH1). This set of water-
soluble proteins consists of 995 sequences.

Calculation of amino acid residue transmembrane
propensities (potentials)

As described by Pasquieret al. (1999), a propensity for each
residue to be in a transmembrane region was calculated using
the formula

Fi
TM

Pi 5 , (1)
Fi

wherePi is the propensity value (transmembrane potential) of
residue typei and Fi

TM and Fi are the frequencies of theith
type of residue in transmembrane segments and in the entire
SWISS-PROT database respectively. Values above 1 indicate
a preference for a residue to be in the lipid-associated structure
of a transmembrane protein, whereas propensities below 1
characterize unfavorable transmembrane residues. The propen-
sity values for the 20 amino acid residues are given in Table I.

Neural network topology and training parameters

The neural network used here has a multi-layer feed-forward
(MLFF) topology. It consists of an input layer, one hidden
layer and an output layer. Each of the units in the input layer
are connected to all of the units in the hidden layer. The units
in the hidden layer are then connected to all of the units in
the output layer. This is a ‘fully-connected’ neural network
where each uniti of a given layer is connected to each unitj
of the next layer (Figure 1). The strength of each connection
is given by a weightwij. The states of each unit in the input
layer is assigned directly from the input data, whereas the
statessj of higher layersj are computed by the sigmoid function

1
sj 5 , (2)
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wherewj0 is a bias from the statessi of lower layers.

The network was trained using the backpropagation algo-
rithm. During this process, a data set, describing the statessi
of the input units and their desired output value is presented
to the network. The activations of the units of the network are
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Table I. Propensity values and corresponding input used in the neural
network for the 20 amino acid residue types that belong to transmembrane
segments, calculated from the entire SWISS-PROT database

Residue Pi NN input

Phenylalanine F 2.235 1.000
Isoleucine I 2.083 0.929
Leucine L 1.845 0.817
Tryptophan W 1.790 0.791
Valine V 1.756 0.775
Methionine M 1.502 0.655
Alanine A 1.383 0.599
Cysteine C 1.202 0.514
Glycine G 1.158 0.494
Tyrosine Y 1.075 0.455
Threonine T 0.879 0.362
Serine S 0.806 0.328
Proline P 0.597 0.230
Histidine H 0.395 0.135
Asparagine N 0.389 0.132
Glutamine Q 0.273 0.078
Aspartic acid D 0.153 0.021
Glutamic acid E 0.131 0.011
Arginine R 0.124 0.007
Lysine K 0.108 0.000

Fig. 1. Schematic architecture of the neural network. Amino acids of the
input sequence are converted to unique input values corresponding to the
propensity for each amino acid to be located inside a transmembrane region
(see Table I). Output of the network consists of values between 0 and 1.
Values above 0.9 (shown in black on the figure) indicate a detection of a
potential transmembrane segment.

then calculated, feeding forward layer-by-layer from the inputs
to the output. Once the network output value has been produced,
it is compared with the target output specified in the training
data set. Following this comparison, a backwards adjustment
of the weights (backpropagation) is performed in order to
minimize the differences between the computed output and
the desired output value. The algorithm is performed until the
total error reaches a low enough value which means that the
network comes to approximate the target values, given the
inputs in the training set.

During the prediction phase, the neural network is fed with
new input data that are not in the training set. By a simple
feed-forward process, using the previously obtained weight,
new output values are calculated and are taken as predictions
of the network.

Applied to our classification problem, the idea is to use as
input to the network a representation of a part of a sequence
in order to obtain a unique output showing whether the
analyzed segment is related to a transmembrane region or not.

The propensity values for the 20 amino acids given in
Table I, which can be regarded as numeric representations of
amino acids, are used to encode the input segment after being
linearly transformed to lie within the range 0 to11 (Figure
1). The output of the network consists of a unique value
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between 0 and 1, which gives the propensity that the input
segment is related to a transmembrane region. A high output
value (greater than 0.9) is used to trigger the detection of a
transmembrane segment. When at least one transmembrane
region is detected, a protein is classified in the membrane
protein class, otherwise it is put in the non-membrane pro-
tein class.

Experimentation determined the optimal size of the input
layer to be 30. Training proteins were converted to input
vectors by shifting a window of 30 residues successively
through the sequence, i.e. the first segment contains amino
acids from position 1 to 30, thenth segment encodes amino
acids from positionn to n130. The training set was accordingly
converted to 3140 input vectors of 30 values each.

Considering an input vector of 30 amino acids, we decided
that it represents a significant transmembrane region if at least
10 amino acids in it belong to a transmembrane segment. This
number was found by experimentation. Experimentation also
determined the optimal number of hidden layers to be 1 and
the number of neurons in this layer to be 2. The network was
totally connected between adjacent layers (Figure 1).

The neural network was trained with the 3140 input vectors
and their corresponding output values until convergence to a
total error of less than 0.005.

Results
Using only information contained in 11 sequences from the
training set, the neural network was able to generalize the
processing of a test set with very good reliability. When
applied to the five test sets of membrane proteins (see Materials
and methods), the system gave a perfect prediction rating of
100% by classifying all the sequences in the membrane class.
A total of 101 non-homologous proteins constituted the final
test set (details are given at the Web address http://o2.db.uoa.gr/
PRED-TMR). Six proteins of the training set were included
in the test set. Removing them from the test set, the neural
network still predicted the remaining 95 proteins as membrane
proteins (100% accuracy). For the test set of 995 globular
proteins (see Materials and methods), the neural network
predicted falsely 23 of them to be in the membrane class
(97.7% of correct assignment). The proteins falsely classified
were 1AGN, 1AMU, 1ARZ, 1AW8, 1BFD, 1BIB, 1BNK,
1CD1, 1DLC, 1FGJ, 1IHP, 1KVE, 1LXT, 1MAZ, 1NOX,
1OVA, 1PS1, 1TAD, 1TAH, 1UAE, 1WER, 2ABK and 3R1R.

These results are good but they cannot be easily generalized
to decide the predictive power of the method applied on real
cases, like the classification of open reading frames (ORF’s)
identified in complete genomes. The test sets of membrane
proteins indeed seem too limited and composed exclusively
of proteins where reliable information about the location
of transmembrane segments already exists. This does not
necessarily reflect the composition of the complete genome.
In addition, the proteins used in these sets contain only
transmembraneα-helices, which are easier to predict than
transmembraneβ-strand segments (Diederichset al., 1998).

Despite the errors contained in SWISS-PROT, it is thought
that the annotations contained in this database can be used to
automatically extract two sets of membrane and non-membrane
proteins, which should be more representative of the composi-
tion of complete genomes. These sets can serve as a common
test set that could be used for the rating and comparison of
similar methods.

The set of membrane proteins extracted from the SWISS-
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Table II. Percentages of transmembrane proteins predicted by PRED-TMR2
on seven complete genomes

Genome names Percentage of TM proteins

Escherichia coli 24.6
Haemophilus influenzae 21.2
Methanococcus jannaschii 19.8
Mycoplasma genitalium 26.3
Mycoplasma preumoniae 22.9
Saccharomyces cerevisiae 28.0
Synechocystis SP 26.5

PROT database release 37 contains 10 743 entries. It has been
built by selecting all the sequences containing the keyword
‘TRANSMEMBRANE’ and having at least one transmembrane
segment annotated. All the remaining sequences in the database
are not necessarily non-membrane proteins as some membrane
sequences might not have been annotated yet. A reliable set
was extracted by selecting, from the cluster of proteins not
classified as transmembrane proteins, only sequences with a
known three-dimensional structure (presence of the keyword
‘3D-STRUCTURE’). The set of non-membrane proteins con-
tained 2280 sequences.

The neural network was applied to the sets of membrane
and globular proteins collected. For the membrane proteins, it
correctly classified 92.28% of them in the membrane protein
set (9914 out of 10 743). Our neural network was also tested
on proteins containing transmembraneβ-strands (Diederichs
et al., 1998) and it produced disappointing results. For the
globular water-soluble proteins, it correctly classified 93.38%
of them (2129 out of 2280). The score obtained on this set of
globular proteins is lower than the rating calculated on the set
taken from PDBSELECT but it should be a good indicator of
the validity of the extraction method. The ratio of 93% of
correct assignment (both for membrane and non-membrane
proteins) should be representative of the predictive power of
the method when applied to complete genomes.

On the basis of these encouraging results, the neural network
was associated with the PRED-TMR algorithm (Pasquieret al.,
1999) in a new application package called PRED-TMR2. This
program can be used directly for the prediction of unknown
proteins or on the ORF’s predicted by the various genome
projects.

It is true that this neural network does not provide evidence
for the presence of N-terminal signal peptides. Methods exist
capable of identifying signal peptides and predicting their
cleavage sites (e.g. Nielsenet al., 1997). If the set of membrane
proteins (containing the keyword ‘TRANSMEM’) extracted
from the SWISS-PROT database release 37, which contains
10 743 entries, is screened for the presence of signal peptides,
8558 sequences are found with no signal peptides. Of these,
7888 are correctly classified with the use of the neural network
(92.17% accuracy).

PRED-TMR2 has been applied on seven complete genomes
and on the entire content of the SWISS-PROT database. The
percentage of membrane sequences predicted in each genome
is given in Table II. The results range from 19.8% for
Methanococcus jannaschiito 28% forSaccharomyces cerevis-
iae. Details of the results obtained can be downloaded together
with the list of the transmembrane segment assignments from
http://o2.db.uoa.gr/PRED-TMR2/Results/. The results have not
been screened for the presence of N-terminal signal peptides.
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Discussion
The prediction of transmembrane segments within proteins is
a central problem of computational biology. A number of
methods have been developed over the past 20 years. Some
of them accomplish high accuracy and are available via the
Internet [see, for example, Promponaset al. (1999) and
references therein]. However, most of these methods are
focused on the localization of transmembrane segments in
known integral membrane proteins and produce a number of
false segment detections when applied to globular water-
soluble proteins. The rate of over-prediction is not well known
as few works have been published on this subject. Two recent
papers tackle the problem of identification of transmembrane
proteins. Kiharaet al. (1998) have tested their method on two
sets of 89 transmembrane proteins collected from the literature
and 928 globular proteins extracted from PDBSELECT. They
announce a correct classification of 82 of the transmembrane
proteins (92.13%) and of 836 of the globular ones (90.1%).
Our neural network was found to perform slightly better than
this method. Hirokawaet al. (1998) made the tests of their
SOSUI system on a set of 92 transmembrane proteins listed
by Fariselli and Casadio (1996) and 502 soluble proteins
extracted from PDBSELECT and state that their system
discriminated all sequences correctly, except for one in each
set of data, resulting in an accuracy of more than 99%.
Concerning the classification of transmembrane proteins, our
method produced similar results as SOSUI: an accuracy of
100% was achieved on the same set and also on several other
sets. For the globular proteins, SOSUI, with an incredible
accuracy of 99.8%, seems to perform slightly better than our
neural network, which was tested on a larger set (995 proteins)
extracted from PDBSELECT with an accuracy of 97.7%. An
execution of SOSUI on the 23 soluble proteins misclassified
by our system results in three of them being assigned to
transmembrane proteins (1bnk, 1cd1, 1kve). Even with these
errors, the rating is still excellent and better than our method,
assuming that all remaining sequences are correctly predicted
by SOSUI.

The systems above do not use neural network systems for
the classification. We show here that a simple and very fast
neural network system can be successfully applied to this kind
of problem. The novelty in our network topology is the small
number of neurons and connections required. Most of the
neural network systems presented so far use the same local
encoding for each amino acid in a sequence (Qian and
Sejnowski, 1988; Reczko, 1993; Rostet al., 1995; Fariselli
and Casadio, 1996; Aloyet al., 1997; Diederichset al., 1998),
i.e. each residue is represented by a vector of 20 or 21 values.
The input layer of the networks using this encoding must be
20 times the size of the input segment. In the case of a window
of 30 amino acids, this represents 600 neurons. In our system,
each amino acid is encoded with a unique value and only two
neurons in the hidden layer are used.

It is known that the successful generalization of a prediction
by a neural network requires a much larger number of cases
that the number of weights adjusted during the training
phase. With our architecture, the total number of connections
associated with a weight is only 62 (60 to connect 30 input
neurons to the hidden layer and 2 from this layer to the unique
output). This allows one to successfully train the network with
information on the topology of very few proteins. In our
application, the number of cases (3140) is larger than the
number of weights by a factor of 50.
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In addition, the simple feed-forward topology of the network
and its limited number of connections allow proteins to be
processed very quickly and could open the way for a new
implementation able to handle longer segments of amino acids
and, perhaps, complete sequences.

A WWW server running the PRED-TMR2 algorithm is
freely available at http://o2.db.uoa.gr/PRED-TMR2/
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