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Abstract

The purpose of this work was to construct a consensus prediction algorithm of ‘aggregation-prone’ peptides in globular
proteins, combining existing tools. This allows comparison of the different algorithms and the production of more objective
and accurate results. Eleven (11) individual methods are combined and produce AMYLPRED2, a publicly, freely available web
tool to academic users (http://biophysics.biol.uoa.gr/AMYLPRED2), for the consensus prediction of amyloidogenic
determinants/‘aggregation-prone’ peptides in proteins, from sequence alone. The performance of AMYLPRED2 indicates
that it functions better than individual aggregation-prediction algorithms, as perhaps expected. AMYLPRED2 is a useful tool
for identifying amyloid-forming regions in proteins that are associated with several conformational diseases, called
amyloidoses, such as Altzheimer’s, Parkinson’s, prion diseases and type II diabetes. It may also be useful for understanding
the properties of protein folding and misfolding and for helping to the control of protein aggregation/solubility in
biotechnology (recombinant proteins forming bacterial inclusion bodies) and biotherapeutics (monoclonal antibodies and
biopharmaceutical proteins).
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Introduction

Protein and peptides may form aggregates under various

conditions [1]. These aggregates may lack any ordered structure

or may be characterized by different degrees of order. Amyloid

structures constitute a specific subset of insoluble fibrous protein

aggregates. These structures arise by sequences that allow the

formation of intermolecular beta-sheet arrangements and their

packing in the highly stable three-dimensional structure of amyloid

fibrils [2–4]. The biological properties of these cross-b fibrillar

aggregates differ from those of amorphous aggregates. Amyloid

fibrils have also functional roles throughout all kingdoms of life as

protective formations, structural scaffolds, water tension modula-

tors, adhesives etc [5–7]. Furthermore, protein deposits found in

association with many human diseases are often characterized by

amyloid structure. These ‘conformational diseases’ are collectively

called amyloidoses and can be systematic or localized (affecting

only specific organs). They include, among others, neurodegen-

erative diseases (e.g. Alzheimer’s, Huntington’s, Parkinson’s), type

II diabetes and prion diseases [8,9].

Many studies suggest that not all regions of a polypeptide chain

are equally important for determining its aggregation tendency. It

seems that protein aggregation is mediated by short ‘aggregation

prone’ peptide segments [10–12]. These aggregation nucleating

regions can be detected in the sequence of a protein utilizing

bioinformatics prediction methods, based on physicochemical

principles (phenomenological models) or/and molecular simulation

approaches [13].

Many prediction algorithms have been developed during the

last decade to perform this task. Kallberg et al. [14] searched for a-

helices with a tendency to form b-sheets. Yoon and Welsh [15,16]

calculated the hidden b-propensity to find regions that appear to

be natively a-helical but have nonetheless the ability to form b-

strands. Hamodrakas et al. [17] have similarly looked for

‘‘conformational switches’’ in sequences, i.e. regions with a high

predicted tendency to form both a-helices and b-strands, using the

consensus secondary structure prediction program SecStr [18].

Dobson and colleagues [19,20] made the first efforts to predict

the effects of mutations on peptide/protein aggregation rate and

later, Tartaglia et al. [21,22] also studied the factors that determine

the aggregation rate of proteins. Lopez de la Paz and Serrano [23]

identified a sequence pattern that is involved in the formation of

amyloid-like fibril, using saturation scanning mutagenesis analysis

on the de novo-designed amyloidogenic peptide STVIIE.

Fernandez-Escamilla et al. [24] developed a statistical mechan-

ics algorithm (TANGO) designed to predict b-sheet aggregation of

proteins, which is different from amyloid fibril formation tendency

but is highly correlated. Idicula-Thomas and Balaji [25] tried to

understand the sequence characteristics (including aliphaticity,

instability, orderliness and sheet propensity) of proteins that are

prone to form amyloid fibrils.

Thompson et al. [26] and Zhang et al. [27] identified compu-

tationally peptide segments that fit as b-strands in a stacked b-

sheet structure based on the solved microcrystal structures

obtained from the peptides GNNQQNY and NNQQNY [28],

known amyloidogenic regions from the yeast prion Sup35. Saiki
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et al. [29] developed a prediction method based on a structural

model of amyloid fibrils.

Galzitskaya et al. [30] related the Average Packing Density of

stretches of residues to the formation of amyloid fibrils. Later, they

improved this method including hydrogen bonding interactions

(FOLDAMYLOID) [31]. Zibaee et al. [32] developed SALSA

(Simple ALgorithm for Sliding Averages) to locate regions with

high propensity for b-strand structure. AGGRESCAN from

Conchillo-Solé et al. [33] was based on an aggregation propensity

scale for natural amino acids derived from in vivo experiments.

Trovato et al. [34] (PASTA) and Bryan et al. [35] (BETASCAN),

looked for potential b-strand pairs. Clarke and Parker [36]

combined a coarse-grained physico-chemical protein model with a

highly efficient Monte Carlo sampling technique to identify

amyloidogenic sequences.

Tian et al. [37] developed a phenomenological method (Pafig)

based on Support Vector Machines (SVM), for the identification

of hexapeptides associated with amyloid fibrillar aggregates. 41

physicochemical properties were selected by a two-round selection

from 531 physicochemical properties in the Amino acid index

database (AAindex). Recently, Nair et al. [38] published a paper in

which they described the combination of SVMs with ANNs for the

identification of amyloidogenic peptides.

WALTZ from Maurer-Stroh et al. [39] used position-specific

scoring matrices to determine amyloid-forming sequences. David

et al. [40] used a naive Bayesian classifier and a weighted decision

tree for predicting the amyloidogenicity of immunoglobulin

sequences. O’Donnell et al. [41] designed AmyloidMutants to

predict the structural and mutational landscapes of amyloid fibrils

using energy calculations.

Our lab developed a consensus algorithm for the prediction of

amyloidogenic determinants from sequence alone, called

AMYLPRED [42] (2009). AMYPLRED was based on 5 different

methods. We found that its results tend to be slightly more

accurate than the individual predictors. We have improved this

tool recently, creating AMYLPRED2, by adding 6 novel, recently

published, algorithms. Therefore, AMYLPRED2 combines 11

different methods in total.

In this work, we apply AMYLPRED2 on a set of 33

amyloidogenic proteins, showing that it performs better than its

subordinate methods, we indicate how it can be used to improve

the solubility of recombinant proteins, inhibiting the formation of

bacterial inclusion bodies, and we provide a specific example of its

possible use for the production of more soluble humanized

monoclonal antibodies, in biotherapeutics.

Methods

The consensus web tool AMYLPRED2 (available at http://

biophysics.biol.uoa.gr/AMYLPRED2/) includes the following

methods: Aggrescan [33], AmyloidMutants [41], Amyloidogenic

Pattern [23], Average Packing Density [30], Beta-strand contiguity

[32], Hexapeptide Conformational Energy [27], NetCSSP [16],

Pafig [37], SecStr (Possible Conformational Switches) [17], Tango

[24] and Waltz [39]. AMYLPRED2 takes the results of

Amyloidogenic Pattern, Average Packing Density, Beta-strand

contiguity, Hexapeptide Conformational Energy and SecStr from

the output of the original AMYLPRED, which calls the individual

scripts locally in our server. The b-strand contiguity script (which

was written by our lab), and the Pafig script are also executed

locally. The output of the rest of the methods is taken directly from

their own respective servers.

The consensus of these methods is defined as the hit overlap of

at least n/2 (rounded down) out of n selected methods (i.e. 5 out of

11 methods, if the user chooses to use all available methods). This

is an empirical threshold that was chosen based on many tests we

performed. We ran multiple subsets of proteins with multiple

combinations of those 11 algorithms and with all possible

thresholds (2–11). The lower the threshold was, the higher the

sensitivity (the lower the specificity) and vice versa. In most cases,

the best balance between sensitivity and specificity (best Q and

MCC) was provided by the hit overlap of at least n/2 (rounded

down) out of n methods.

The primary output of the program is the consensus prediction.

However, the individual predictions of the incorporated methods

are also made available by pressing the button ‘‘Show/hide

methods’’. Furthermore, a consensus histogram is shown by

pressing the button ‘‘Show/hide consensus’’. All results are also

made available in the form of a text file, maintained on the server

for one day (24 hours). These features allow a researcher to

compare individual predictions, evaluate the results and focus on

the predicted segments of interest. For example, a consensus

prediction from 10 out of 11 methods for an amyloidogenic

segment is way stronger from a consensus prediction in which only

5 methods agree. Nevertheless, consensus agreement lower than

the threshold of 5 may reveal hidden amyloidogenic segments,

which may play an important role in the amyloidogenic process. It

is up to the researcher to use/evaluate the results based on other

available data and experience.

Many individual methods provide several different settings. We

tried them with many different values and combinations of values.

Finally, we chose those values that yield the best performance, for

each method alone, based on the results of tests that the individual

authors provide in their published papers and -in addition- we

performed our own tests with multiple subsets of amyloidogenic

proteins. For AmyloidMutants, we use the default settings and the

cross-beta pleat (serpentine) structural scheme (the other structural

schemes had some performance issues and they often failed to give

any results). For Average Packing Density, values above 21.4 [30],

obtained from a five-residue long sliding window are considered as

hits. For Beta-strand contiguity, we use a threshold value of MbP

. = 1.2 [32] and we consider total y values above 20 as hits. For

Hexapeptide Conformational Energy, energy values below

227.00 [27] are considered as hits. For NetCSSP, we use the

dual network architecture as it has greater accuracy [16]. The

amyloidogenic hidden beta propensity (HbP) is calculated using

the form HbP = P(beta)/P(helix). Residues with values of HbP

above 1 and of P(beta) above 6 are considered as hits. For Pafig,

we use a threshold for the Reliability Index of 7 [37]. For Tango,

Tango 2.1 is used and scores above 5.00% for beta aggregation are

considered as hits [24]. Tango requires a set of environmental

parameters for each submission. The default values from the

TANGO online submission form are used. For Waltz, we use pH

= 7.0 and a threshold value of 79.0 (High Sensitivity), because,

according to our own tests, it gives better overall results [43]. We

have to note that the default setting ‘Best overall performace’ of

Waltz (threshold 92.0) had lower Q ( = 56.20) and MCC ( = 0.157)

for the test set of 33 proteins. Some of the individual methods have

limitations regarding the minimum length of the input sequence.

Pafig needs at least 6 residues, NetCSSP at least 7 residues,

whereas AmyloidMutants needs a minimum of 20 residues. For

more details regarding how the individual methods are used in the

consensus prediction, please consult AMYLPRED2 web help page

in this URL: http://biophysics.biol.uoa.gr/AMYLPRED2/.

We have tested the consensus method of AMYLPRED2 against

each of the individual methods on a set of 33 amyloidogenic

proteins for which experimental data is available (Table S1). For

this test set, we collected from the literature, as many as we could,

Prediction Software of Aggregation-Prone Peptides
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well-studied amyloidogenic proteins. We took care to cross-check

the amyloidogenic regions of these proteins. To make sure that our

test will not yield ‘artificial’ and/or unreliable results, we searched

to find data from many published experiments and different

experimental methods that support the amyloidogenicity of these

specific regions. We excluded two proteins, Laminin alpha-1 chain

of mouse (3080 AA) and Human complement receptor type 1

(2039 AA), because they are huge and only a very small segment of

them has been studied and this would introduce bias to the results.

We also excluded proteins with similar sequences to avoid

redundancy (e.g. we included, in the test set, only the human

Major Prion Protein and not that of the mouse because of the

similarity between the sequences). Because the number of proteins

that form amyloid fibrils is relative small, we didn’t exclude the

proteins that some individual methods used for data collection

and/or training. For example, the training set of Pafig is so large

that if we had to remove these proteins, we wouldn’t have many

left (We must note that Pafig has performed its own cross-

validation test [37]).

Amino acid sequences of the proteins used in this study were

retrieved from UniprotKB (http://www.uniprot.org) [44]. Protein

structures were retrieved from PDB (http://www.pdb.org) [45].

For each protein structure used, residues accessible to the solvent

or buried into a protein’s hydrophobic interior were determined

utilizing the algorithm DSSP [46]. True/false positives (TP, FP)

and true/false negatives (TN, FN) for each method were counted

on a per residue basis. Sensitivity is measured as TP/(TP + FN),

specificity as TN/(TN + FP), Q is calculated as (Sensitivity +
Specificity)/2 and Matthews Correlation Coefficient (MCC) as

(TP * TN – FP * FN)/!((TN + FN) * (TN + FP) * (TP + FN) * (TP

+ FP)).

Results

We have found that AMYLPRED2 has the best Q and MCC

compared to its subordinate methods (Table 1). Beta-strand

contiguity and Pafig are following in the next positions.

AMYLPRED2 has almost the same specificity with the original

AMYLPRED, but there is a 6% increase in its sensitivity.

We should note that the numbers shown in Table 1 are subject

to change as more experimental data become available. Regions

currently regarded as non-amyloidogenic are not necessarily so

and may prove to be in fact amyloidogenic in the future.

Predictions with a strong agreement among many different

methods may suggest amyloidogenic determinants/‘aggregation-

prone’ sequences currently unknown and consensus methods like

AMYLPRED2 might therefore provide valuable hints to research-

ers.

Indeed, our lab has synthesized peptides, representative for

several regions (more than 25) that AMYLPRED has indicated as

amyloidogenic in proteins related to amyloidoses and we have

found using Electron Microscopy, X-ray diffraction, Congo Red

staining and ATR FT-IR and Raman spectroscopy that these

peptides, indeed, form amyloid fibrils in vitro (In preparation, see

also ref. 45).

In Table S2, we have calculated the MCC per protein per

method. This allows us to examine some performance details. We

see that many methods fail in specific proteins. For example, most

methods have a low MCC with regard to some large proteins (e.g.

Gelsolin, Kerato-epithilin, Lactoferrin). The main reason for that

is the fact that only a relative small portion of them have been

studied and confirmed experimentally to be amyloidogenic.

Therefore, there are too many false(?) positives for the rest of

these proteins.

We also see that most methods have problems with some prion

proteins from fungi like Sup35, Ure2 and Het-s (Sup35 and Ure2

are Q/N-rich proteins). But they seem to predict quite well the

amyloidogenicity of the human Major prion protein.

With the exception of Waltz, most methods predict different

regions from the experimentally verified for Calcitonin (a 32-

amino acid peptide hormone). They also seem to perform poorly

for bacterial Cold Shock Protein from Bacillus subtilis, a small,

amyloidogenic, protein (They predict only a small segment as

amyloidogenic, so there are many false negatives).

Table 1. Performance of the tool AMYLPRED2 and of its subordinate methods, on a set of 33 amyloidogenic proteins (see
Table S1).

METHOD TP TN FP FN SENSIIVITY (%) SPECIFICITY (%) Q (%) MCC

Aggrescan [33] 445 5210 1363 813 35.37 79.26 57.32 0.13

AmyloidMutants [41] 524 4924 1649 734 41.65 74.91 58.28 0.14

Amyloidogenic Pattern [23] 176 6208 365 1082 13.99 94.45 54.22 0.12

Average Packing Density [30] 361 5529 1044 897 28.70 84.12 56.41 0.12

Beta-strand contiguity [32] 417 5628 945 841 33.15 85.62 59.39 0.18

Hexapeptide Conf. Energy [27] 494 5172 1401 764 39.27 78.69 58.98 0.15

NetCSSP [16] 645 4287 2286 613 51.27 65.22 58.25 0.12

Pafig [37] 651 4695 1878 607 51.75 71.43 61.59 0.18

SecStr [17] 143 6205 368 1115 11.37 94.40 52.88 0.09

Tango [24] 172 6282 291 1086 13.67 95.57 54.62 0.14

Waltz [39] 710 4300 2273 548 56.44 65.42 60.93 0.16

AMYLPRED [42] 415 5668 905 843 32.99 86.23 59.61 0.19

AMYLPRED2 494 5553 1020 764 39.27 84.48 61.88 0.22

True/false positives (TP, FP) and true/false negatives (TN, FN) for each method were counted on a per residue basis. Sensitivity is measured as TP/(TP + FN), specificity as
TN/(TN + FP), Q is calculated as (Sensitivity + Specificity)/2 and Matthews Correlation Coefficient (MCC) as (TP * TN – FP * FN)/!((TN + FN) * (TN + FP) * (TP + FN) * (TP +
FP)).
doi:10.1371/journal.pone.0054175.t001
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In Table S2, we also see the average values of MCC per protein

per method. In this calculation, every protein has the same weight

(1/33) in the final result. This corrects some bias that originates

from the size of proteins and the relevant problems we have

discussed earlier. These results confirm that AMYLPRED2 has

the best overall performance with a value of MCC equals to 0.34,

while Waltz, AMYLPRED, Beta-strand contiguity and Aggrescan

have values 0.29–0.27.

Discussion

Amyloidoses are conformational diseases that affect an increas-

ing number of individuals, deteriorating their quality of life and

imposing, frequently, a major burden in their families. Many

research groups around the world are trying to detect the causative

agents and to discover a therapy against these diseases. Bioinfor-

matics plays a key role towards the accomplishment of these

efforts. Even though, prediction tools cannot substitute experi-

mental work, they may help researchers in focusing at potential

amyloidogenic regions for further experimental studies [47].

Another interesting application of the methods predicting

‘aggregation-prone’ sequences/amyloidogenic determinants is

their use in the field of biotechnology. The recombinant proteins

produced in bacterial cells often tend to aggregate, forming

inclusion bodies [48]. This kind of protein aggregation has been

shown to resemble amyloid fibril formation, and, actually, it has

been shown conclusively that inclusion bodies contain amyloid

fibrils [49–54]. There is clearly the possibility to improve the

solubility of recombinant proteins by locating and altering the

potential of the amyloidogenic determinants/‘aggregation-prone’

sequences [43].

Protein aggregation has also been connected to increased

immunogenicity and undesirable immunogenic reactions [55].

Aggregation and immunogenicity constitute major bottlenecks

during the discovery and development stages of biotherapeutics. It

has been shown that ‘aggregation-prone’ regions predicted by

AMYLPRED may overlap with immune epitopes in biotherapeu-

tics (IFN-b), i.e. with regions that are responsible for immunoge-

nicity [56].

Furthermore, methods that are included in AMYLPRED2,

have been used for the prediction of potential ‘aggregation-prone’

regions in commercial monoclonal antibodies and the discovery of

‘aggregation-prone’ motifs in biopharmaceuticals (albumin, insu-

lin, factor VIII and others) [57,58]. We provide an illustrated

example of this use of AMYLPRED2 in Fig. 1, where the high

resolution (1.80Å) crystal structure of the anti-ErbB2 Fab2C4 [59]

(PDB code: 1L7I) is depicted, as a space-filling model (Fig. 1a)

[60]. This is a humanized monoclonal antibody fragment that

binds to the extracellular domain of the human oncogene product

ErbB2. ErbB2 has been shown to play an important role in the

pathogenesis of certain aggressive types of breast cancer.

Amyloidogenic/‘aggregation-prone’ regions of anti-ErbB2, com-

putationally predicted by AMYLPRED2, are coloured red.

Performing only two single amino acid substitutions (T28G and

I201E), the AMYLPRED2 output (Fig. 1b) suggests that the

antibody has ‘lost’ two crucial ‘aggregation-prone’ regions and

may, therefore, be more soluble, not forming aggregates that

complicate drug development and therapy.

So, methods like AMYLPRED2 may help the researchers not

only to find new therapeutic approaches against amyloidoses or to

improve the existing ones, but, also, to design better drugs with

fewer side effects (Quality by Design).

Conclusions

Protein aggregation and amyloid fibril formation prediction

methods might be used for screening therapeutic approaches

against amyloidoses and the control and fine-tuning of protein

solubility in the field of biotechnology. Furthermore, they may be

used to improve protein solubility in biotherapeutics. Last but not

least, these methods may improve our understanding of amyloid-

fibril formation pathways/processes. A comparative and consensus

tool, like AMYLPRED2, may help by offering more objective

Figure 1. The crystal structure (space-filling model) of the anti-
ErbB2 Fab2C4 (PDB code: 1L7I) is shown. (A). This is a humanized
monoclonal antibody fragment that binds to the extracellular domain
of the human oncogene product ErbB2 (ErbB2 has been shown to play
an important role in the pathogenesis of certain aggressive types of
breast cancer). Computationally predicted ‘aggregation-prone’ regions
by AMYLPRED2 are coloured red. Performing only two single amino
acid substitutions (T28G and I201E), the AMYLPRED2 output suggests
that the antibody has ‘lost’ two crucial ‘aggregation-prone’ regions and
may, therefore, be more soluble, not forming aggregates (B). Molecular
graphics were performed with the UCSF Chimera package. Chimera,
developed by the Resource for Biocomputing, Visualization, and
Informatics at the University of California, San Francisco (supported
by NIGMS 9P41GM103311) [60].
doi:10.1371/journal.pone.0054175.g001
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results and a direct comparison of existing methods and

algorithms.

Supporting Information

Table S1 Prediction of amyloidogenic regions or ‘‘ag-
gregation-prone’’ stretches, for 33 amyloidogenic pro-
teins by AMYLPRED and AMYLPRED2, for comparison.
Superscripts after each protein name (first column)
refer to the relevant literature used (given at the bottom
of the Table) to obtain experimental information. The

residue numbering for the sequence features (first column) refers to

the respective Uniprot entries. The sequences of the mature

proteins are given in the second column. Experimentally verified

amyloid forming regions/‘‘aggregation-prone’’ stretches are

shown in bold. The residue numbering for the experimental and

predicted regions (remaining columns) refers to the mature protein

only. Bold font highlights hits that are in agreement with

experimental data. Surface accessibility for these peptides was

calculated in Å2, using DSSP, with a probe radius of 1.4 Å (which

approximates the radius of a water molecule). One asterisk (*)

denotes peptides on the surface of the relevant proteins using a

per-residue cut-off of 20 Å2 (corresponding to ,2 water molecules

per residue). A double asterisk (**) denotes semi-surface peptides

(with a per-residue value between 10–20 Å2).

(PDF)

Table S2 MCC per protein per method. The main reason

that the majority of methods has a low MCC with regard to some

large proteins (e.g. Gelsolin, Kerato-epithilin, Lactoferrin) is the

fact that only relative small regions of them have been studied and

confirmed experimentally to be amyloidogenic. Therefore, there

are too many false(?) positives for the rest of these proteins. We also

see that most methods have problems with some prion proteins

from fungi like Sup35, Ure2p and Het-s (Sup35 and Ure2p are Q/

N-rich). But they seem to predict quite well the amyloidogenicity

of the human Major prion protein. With the exception of Waltz,

most methods predict different regions from the experimentally

verified for Calcitonin (a 32-amino acid peptide hormone). They

also seem to perform poorly for bacterial Cold Shock Protein from

Bacillus subtilis, a small, completely amyloidogenic, protein (They

predict only a small segment as amyloidogenic and therefore, there

are many false negatives).

(PDF)
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