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Protein aggregation and amyloid fibril formation
prediction software from primary sequence: towards
controlling the formation of bacterial inclusion bodies
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Background and aims

Normally soluble proteins or peptides convert under

certain conditions into ordered fibrillar aggregates

known as amyloid deposits. The fibrils which consti-

tute these amyloid deposits are known as amyloid

fibrils and the amyloid fibrils or their precursors

appear to be related to several neurodegenerative dis-

eases including Alzheimer’s, Parkinson’s, Huntington’s,

and also type II diabetes, prion diseases and many oth-

ers, collectively called amyloidoses. Amyloidogenic

proteins are quite diverse, with little similarity in

sequence and native three-dimensional structure [1,2].

Additionally, several proteins and peptides not related

to amyloidoses have the potential to form amyloid

fibrils in vitro, suggesting that this ability for structural

rearrangement and aggregation may be inherent to

proteins [3].

All amyloid fibrils share the same cross-beta archi-

tecture and several functional proteins found in bacte-

ria, fungi, insects and humans have also been found to

adopt the same architecture under physiological condi-

tions, as part of their functional role ([4–8] and refer-

ences therein), despite the diversity of origin of their

constituent proteins. Attention was given to these func-

tional amyloids after our finding that silkmoth chorion

is a natural protective amyloid [9,10].

Theoretical and experimental evidence indicates that

short sequence stretches may be responsible for amy-

loid formation [11–13] and several methods have been

published recently that attempt to predict aggregation-

prone or amyloidogenic regions, based on various
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Proteins might aggregate into ordered or amorphous structures, utilizing

relatively short sequence stretches, usually organized in b-sheet-like assem-

blies. Here, we attempt to list all available software, developed during the

last decade or so, for the prediction of such aggregation-prone stretches

from protein primary structure, without distinguishing whether these algo-

rithms predict amino acid sequences destined to be involved in ordered

fibrillar amyloids or amorphous aggregates. The results of application of

four of these programs on 23 proteins related to amyloidoses are com-

pared. Because protein aggregation during protein production in bacterial

cell factories has been shown to resemble amyloid formation, the algo-

rithms might become useful tools to improve the solubility of recombinant

proteins and for screening therapeutic approaches against amyloidoses

under conditions that mimic physiologically relevant environments. One

such example is given.

Abbreviations

HST, hot-spot threshold; IB, inclusion body.
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properties of proteins (tango [14], pasta [15–21],

aggrescan [22], salsa [23,24], zyggregator [25]).

We should perhaps mention here that some of the pre-

diction methods try to distinguish amyloid fibril

(ordered aggregates) prediction from amorphous

aggregate prediction, providing also the relevant physi-

cal reasoning and influencing factors. However, we

shall not attempt to distinguish between the two, obvi-

ously functionally different, cases hereinafter.

This minireview aims to provide (a) a short descrip-

tion of prediction algorithms and available software,

(b) results of their use on a set of 23 well-known amy-

loidogenic proteins and (c) guidance towards applying

this software as a useful tool for improving the solubil-

ity of recombinant proteins and for controlling the for-

mation of bacterial inclusion bodies (IBs).

Short description of prediction
algorithms and available software

Each method makes its own assumptions and imple-

ments its own predictors, which range from quite sim-

plistic to quite complex. The ability to form b-strands
is a predominant feature in most works, either in the

form of statistical propensities or in the form of struc-

tural stability. Yoon and Welsh [15] searched for hid-

den beta-propensity in sequences, in other words

regions that appear to be natively a-helical but have

nonetheless the ability to form b-strands. Hamodrakas

et al. [26] have similarly looked for ‘conformational

switches’ in sequences – regions with a high predicted

tendency to form both a-helices and b-strands – using

the consensus secondary structure prediction program

secstr [27] and Zibaee et al. [24] looked for b-conti-
guity, essentially a derivative of b-strand propensity

based on the Chou and Fasman [28,29] set of second-

ary structure preference values. In a more structural

approach, Thompson et al. [20] and Zhang et al. [23]

identified regions computationally that can be stable

b-strands in a stacked b-sheet crystal, similar to the

one obtained from the peptides GNNQQNY and

NNQQNY [30], known amyloidogenic regions from

the yeast prion Sup35, while Trovato et al. [21]

looked for regions with the ability to pair with each

other and form b-sheets, with their program termed

pasta.

The formation of b-strands is not the only predictor

though. Conchillo-Solé et al. [22] defined a set of

aggregation propensities upon which they calculate the

presence of aggregation ‘hot-spots’ in sequences. Their

aggrescan software is based on an aggregation-pro-

pensity scale for the 20 natural amino acids derived

from in vivo experiments and on the assumption that

short and specific sequence stretches are responsible

for protein aggregation. In some more detail: relative

experimental aggregation propensities, for each of the

20 natural amino acids, were initially derived from the

intracellular aggregation of mutants, performing sin-

gle-point mutations at the central position (19) of the

central hydrophobic cluster comprising residues 17–21

of amyloid Ab1–42 Alzheimer’s peptide ([22] and refer-

ences therein). Then, a value is assigned to each resi-

due of a given polypeptide sequence, which is taken

from the table giving the relative experimental (in vivo)

aggregation propensities of the 20 natural amino acids

(a3v). Next, calculations are based on the sliding-win-

dow averaging technique: a sliding window of a given

length is chosen and the program calculates the aver-

age of a3v values over the sliding window and assigns

it to the central residue of the window (sliding-window

lengths of 5, 7, 9 and 11 residues were trained against

a database of 57 amyloidogenic proteins in which the

location of aggregation hot-spots was known from

experiment). This average is called a4v [22]. A plot of

a4v over the entire sequence defines the aggregation

profile of the polypeptide. The hot-spot threshold

(HST) was defined as the average of the a3v of the 20

natural amino acids weighted by their frequencies in

the SwissProt database [22]. A segment of the polypep-

tide sequence is considered as a putative aggregation

hot-spot if there are five or more consecutive residues

with an a4v larger than the HST and none of them is

a proline (aggregation breaker). Several other parame-

ters are calculated and reported, such as the average

a4v in each hot-spot, the area of the aggregation pro-

file above the HST, the total area (the HST being the

zero axis) and the area above the HST of each profile

peak identified as a hot-spot. These areas are calcu-

lated numerically using the trapezoidal rule [22]. The

best predictions were obtained utilizing a sliding-win-

dow size of 5 for protein sequences with a length £ 75

residues, 7 for £ 175 residues, 9 for £ 300 residues and

11 for > 300 residues.

Galzitskaya et al. [18,19] also defined a novel intrin-

sic property for amino acid residues, the average

expected packing density, which they found to be cor-

related to amyloidogenesis, while López de la Paz and

Serrano [11] identified a sequence pattern that is

involved in the formation of amyloid-like fibrils.

A variety of multi-parametric methods exist as well.

Pawar et al. [17] and Tartaglia et al. [25] combine

intrinsic properties of amino acid sequences to calcu-

late aggregation propensities, while Tartaglia et al. [25]

and Fernandez-Escamilla et al. [14] additionally

include the effect of environmental variables in their

equations for calculating aggregation rates.
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We demonstrated that a consensus approach might

be better suited for the task of predicting amyloido-

genic stretches [26] and we developed a consensus algo-

rithm, amylpred [31], which combines some of these

methods, representing most of the above-mentioned

categories. These amyloidogenic determinants may

often act as ‘conformational switches’ and thus they

may play the role of templates initiating amyloid for-

mation, through perhaps local structural rearrange-

ments. We have shown that this tool successfully

predicts nearly all experimentally verified amyloido-

genic determinants in the sequences of proteins causing

amyloidoses. Furthermore, amylpred predicts on the

sequences of amyloidogenic proteins several short

potential amyloidogenic stretches that have not yet

been experimentally verified [31]. A rather important

finding by the application of this tool is that nearly all

experimentally verified amyloidogenic determinants or

aggregation-prone sequences and most predicted but

not yet experimentally verified amyloidogenic regions

reside on the surface of the crystallographically solved

crystal structures of the relevant amyloidogenic pro-

teins. This is shown in Figs 1 and 2 and, in more

detail, in [31].

Several other methods have also been proposed

recently that attempt to predict aggregation-prone or

amyloidogenic regions in protein sequences. Clarke

and Parker [32] combined a coarse-grained physico-

chemical protein model with a highly efficient Monte

Carlo sampling technique to identify amyloidogenic

sequences in four proteins for which respective experi-

mental peptide fragmentation data exist. Peptide

sequences were defined as amyloidogenic if the ensem-

ble structure predicted for three interacting peptides

described a stable and regular three-stranded b-sheet.
Tian et al. [33] proposed a method, named pafig (pre-

diction of amyloid fibril forming segments) based on

support vector machines, to identify hexapeptides asso-

ciated with amyloid fibrillar aggregates. pafig was used

to predict the potential fibril-forming hexapeptides in

all of the 64 000 000 possible hexapeptides. As a result,

approximately 5.08% of hexapeptides showed a high

aggregation propensity.

netcssp, an algorithm developed by Kim et al. [34],

implements the latest version of the cssp algorithm

and provides a Flash-chart-based graphic interface that

enables an interactive calculation of CSSP values for

any user-selected regions in a given protein sequence.

The cssp algorithm (calculation of contact-dependent

secondary structure propensity) is a sensitive method

that detects non-native secondary structure propensi-

ties in protein primary structures. The method predicts

local conformational changes, usually associated with

protein aggregation and amyloid fibril formation, and

can quantitatively estimate the mutational effect on

changes in native or non-native secondary structural

propensities in local sequences. This web tool provides

pre-calculated non-native secondary structure propen-

sities for over 1 400 000 fragments that are seven resi-

dues long, collected from Protein Data Bank (PDB)

structures. They are searchable for chameleon subse-

quences (sequences that have the ability to form both

a-helix and b-sheet) that can serve as the nucleating

core of amyloid fibril formation.

The algorithm betascan [35] calculates likelihood

scores for potential b-strands and strand-pairs based

Fig. 1. Cartoon representations of seven proteins related to amyloi-

doses, with experimentally determined structures, which contain

experimentally determined amyloidogenic regions. These seven

protein models (see also Table S1), which were produced utilizing

PYMOL [42] are (A) prolactin (PDB 1RWS); (B) apolipoprotein A-I

(2A01); (C) transthyretin (1BMZ); (D) lactoferrin (1CB6); (E) lyso-

zyme C (1LZ1); (F) gelsolin (2FGH); (G) b2-microglobulin (1LDS).

Experimentally determined amyloidogenic regions are shown in yel-

low. Theoretically predicted amyloidogenic regions, utilizing AMYL-

PRED [31], which coincide with experimentally determined regions

are coloured red, whereas predicted amyloidogenic regions by AM-

YLPRED are shown in blue. The remainder of each protein is shown

in green. Adapted from [31] with permission of BiomedCentral Ltd.
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on correlations observed in parallel b-sheets. The pro-

gram then determines the strands and pairs with the

greatest local likelihood for all of the sequence’s poten-

tial b-structures. betascan suggests multiple alterna-

tive folding patterns and assigns relative a priori

probabilities based solely on amino acid sequence,

probability tables and pre-chosen parameters.

In the foldamyloid method [36], which is an exten-

sion of a method published by the same authors

[18,19] based on the expected packing density of

residues, two characteristics (expected probability of

hydrogen bond formation and expected packing den-

sity of residues) are simultaneously used to detect amy-

loidogenic regions in a protein sequence. The authors

claim that regions with high expected probability of

formation of backbone–backbone hydrogen bonds as

well as regions with high expected packing density are

mostly responsible for the formation of amyloid fibrils.

In more detail, the observed packing density for each

amino acid residue was calculated from a database of

3769 three-dimensional protein structures (which have

< 25% sequence identity between each other)

obtained from the SCOP database [37], containing pro-

teins which belong to the four main SCOP classes

(classes a, b, c and d, which are all-a, all-b, a ⁄b and

a + b proteins, respectively) [36]. The observed pack-

ing density for each amino acid residue is defined as

the number of amino acid residues in contact with the

given residue (two residues are considered to be in con-

tact if any pair of their non-hydrogen atoms is at a

distance < 8 Å). Neighbouring residues in the amino

acid sequence were excluded from this consideration.

The calculated values (average observed packing den-

sity values for each amino acid residue, for the entire

database) are used as a prototype scale for construct-

ing a packing density profile for a certain protein

sequence. Calculations are based on the sliding-win-

dow averaging technique. First, an expected value is

assigned to each residue of the protein, equal to the

average packing density value observed for this type of

residue; then, the obtained values are averaged inside

the window and the average is assigned to the central

residue of the window. The ‘smoothed’ expected values

for every position of the polypeptide chain provide the

final profile, which is directly used for the prediction

of amyloidogenic regions. On the ‘smoothed’ profile, a

region is predicted as an amyloidogenic one if all its

residues lie above a given cut-off (have numbers of

expected contacts higher than the cut-off) and the size

of the region is greater than or equal to the size of the

sliding window used. Optimum values for the cut-off

(threshold) and the sliding-window length are 21.4 con-

tacts per residue and five residues, respectively [36].

The authors of foldamyloid also constructed two

separate, different probability scales for the 20 amino

acid residue types, acting separately either as donors

or acceptors of backbone–backbone hydrogen bonds,

calculated from the same database of 3769 proteins,

utilizing the dssp program [38]. The probability of

backbone–backbone hydrogen bond formation, for

each residue type, was calculated separately as the

total number of hydrogen bonds this residue forms,

acting either as donor or as acceptor, respectively,

divided by the total number of residues of the same

type in the database. The two, apparently, separate

scales of probability of hydrogen bond formation are

also used for constructing profiles over a protein

sequence. Similarly as above, for the construction of

Fig. 2. Cartoon representations of five proteins related to amyloi-

doses, with experimentally determined structures which do not

contain experimentally determined amyloidogenic regions. These

five protein models (see also Table S1), which were produced utiliz-

ing PYMOL [42] are (A) immunoglobulin j-4 light chain (PDB 1LVE);

(B) superoxide dismutase (2C9V); (C) immunoglobulin G1 heavy

chain (1HZH); (D) insulin (1ZNJ); (E) cystatin C (1R4C). Predicted

amyloidogenic regions by AMYLPRED [31] are shown in blue (see also

Table S1). The remainder of each protein is shown in green.

Adapted from [31] with permission of BiomedCentral Ltd.
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the profiles calculations are based on the sliding-win-

dow (five residues in length) averaging technique. First,

an expected value is assigned to each residue of the

protein, equal to the probability of backbone–back-

bone hydrogen bond formation observed for this type

of residue; then, the obtained values are averaged

inside the window and the average is assigned to the

central residue of the window. The smoothed expected

values for every position of the polypeptide chain pro-

vide the final profile, which is directly used for the pre-

diction of amyloidogenic regions. On the smoothed

profile, a region is predicted as an amyloidogenic one

if all its residues lie above a given cut-off and the size

of the region is greater than or equal to the size of the

sliding window used. Optimum values for the cut-offs

(thresholds), determined from receiver–operator char-

acteristic curves, are 0.697 for the method based on

the donor scale and 0.671 for the method based on the

acceptor scale [36].

Thus, there are three scales which allow the predic-

tion of amyloidogenic regions in a protein sequence

(or rather, the ability of a peptide to be amyloido-

genic): the scale of the packing density, and two scales

of the probability of formation of backbone–backbone

hydrogen bonds (assigned to donor and to acceptor

residues, termed donor and acceptor scales, respec-

tively). The authors, in order to take into consider-

ation the above-mentioned scales simultaneously, have

constructed several ‘hybrid’ scales by merging the indi-

vidual scales with equal weights. The ‘hybrid’ scale,

which includes all three scales (contacts +

donors + acceptors) with equal weights, correctly pre-

dicts 80% of amyloidogenic peptides (115 of 144 pep-

tides) and 72% of non-amyloidogenic ones (189 of 263

peptides), with a cut-off value of 0.062, from a data-

base of 407 amyloidogenic and non-amyloidogenic

peptides provided at the foldamyloid site (Table 1)

[36].

waltz is a web-based tool that uses, mainly, a posi-

tion-specific scoring matrix (PSSM) to determine amy-

loid-forming sequences [39]. The PSSM was built

based on the experimental exploration of the sequence

space of amyloid hexapeptides. According to its

authors, waltz allows for identification and better dis-

tinction between amyloid sequences and amorphous

b-sheet aggregates, and also allows for identification of

amyloid-forming regions in functional amyloids. In

more detail, the waltz algorithm was developed by

combining specific sequence information with physico-

chemical as well as structural information.

The PSSM for amyloid propensity of waltz, was

constructed from an experimentally defined training set

comprising 116 ‘positive’ (amyloid-forming) hexapep-

tides and 162 ‘negative’ (non-forming) hexapeptides

(http://waltz.switchlab.org/). This data set is an exten-

sion of the AmylHex database, which contains

community-generated, experimentally verified amyloi-

dogenic hexapeptides, consisting of 67 ‘positive’ and 91

‘negative’ examples that have been used to benchmark

novel prediction methods [20]. The additional exam-

ples ⁄hexapeptides were identified experimentally by the

authors of waltz [39]. The position-specific score for

an amino acid was calculated as a standard log-odd

score in a position-specific scoring matrix (the value

for each amino acid at each position is the logarithm

of the ratio of its frequency in the training set and the

background database). As there is a positive and a

negative set that both sample well the amino acid

space over the motif (hexapeptide) positions, one pro-

file was created for each set (positive and negative,

respectively) and the score against the negative profile

is subtracted (compliance with the negative set) from

the score against the positive profile. Apparently, the

sequence profile (Sprofile) is the sum of position-specific

scores for all amino acids in the hexapeptide.

Nineteen selected physical properties which best

describe amyloid propensity enter the scoring function

as a physical property term Sphysprop consisting of the

sum of the products of the amino acid frequency with

the normalized property value of the respective amino

acid for each position. Essentially, these properties

can be assigned to three major groups representing

beta, helical and solvation-related hydrophobicity pro-

pensities.

As the analysis of the hexapeptide experimental data

sets (positive and negative) may impose sequence bias

specific to the available data, the authors of waltz

Table 1. Protein aggregation and amyloid fibril formation prediction

servers (URLs) and software.

Method URL or software

TANGO [14] http://tango.crg.es/

PASTA [21] http://protein.cribi.unipd.it/pasta/

AGGRESCAN [22] http://bioinf.uab.es/aggrescan/

PRE-AMYL [23] Available at ftp://mdl.ipc.pku.edu.cn/

pub/software/pre-amyl/

SALSA [24] To obtain the software, contact

Louise Serpell (l.c.serpell@sussex.ac.uk)

ZYGGREGATOR [25] http://www-vendruscolo.ch.cam.ac.uk/

zyggregator_test.php

AMYLPRED [31] http://biophysics.biol.uoa.gr/AMYLPRED/

PAFIG [33] Available at http://www.mobioinfor.cn/pafig/

NETCSSP [34] http://cssp2.sookmyung.ac.kr/

BETASCAN [35] http://groups.csail.mit.edu/cb/betascan/

FOLDAMYLOID [36] http://antares.protres.ru/fold-amyloid/oga.cgi

WALTZ [39] http://waltz.switchlab.org/
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estimated the preference or non-preference of amino

acids at the hexapeptide motif positions on a structural

basis using the atomic force field foldx. The fibril

crystal structure of the GNNQQNY peptide from

Sup35 (PDB 1YJP) was first simplified to polyalanine.

Then, all possible pair combinations of all 20 natural

amino acids at all positions were generated and

energy-optimized using foldx [40]. Energy estimates

were calculated with foldx as the DG difference

(DDG) to the reference polyalanine. To retrieve a posi-

tion-specific pseudoenergy matrix for the prediction

scoring function (and calculate Sstruct), they averaged

for each amino acid the energies for all its occurrences

at a certain position in combination with all amino

acids at other positions [39]. waltz combines

sequence, physicochemical as well as structural infor-

mation into a composite scoring function:

Stotal = Sprofile + Sphysprop ) 0.2Sstruct.

The authors of waltz claim that, when omitting the

physicochemical property and structural descriptors in

the prediction function, the sequence profile alone per-

forms better than other prediction algorithms,

although less than the complete scoring function. For

more details, an interested reader should consult the

original publication.

Table 1 provides a list of available servers and also

sites for downloading available software developed for

protein aggregation ⁄ amyloid fibril formation predic-

tion.

Conclusions

Table S1 contains the results of the application of four

(amylpred [31], aggrescan [22], waltz [39] and

foldamyloid [23]) of these servers on 23 well-known

amyloidogenic proteins [31]. Three of these methods,

aggrescan, foldamyloid and waltz, were analysed

in more detail above. A comparison of ‘aggregation-

prone’ stretches ⁄ amyloid fibril forming regions pre-

dicted by all programs with experimentally derived

available information, given in Table S1, emphasizes

what is believed to be true for ‘aggregation-

prone’ ⁄amyloid fibril forming regions prediction soft-

ware: it appears that all methods tend to overpredict

([31] and references therein).

However, this might not actually be the case. We

have undertaken a systematic study of synthesizing

possible amyloidogenic peptide stretches, predicted by

amylpred [31], and testing them experimentally by

transmission electron microscopy, X-ray diffraction,

attenuated total reflection FTIR spectroscopy and

Congo Red binding for their ability to form amyloid-

like fibrils in water solutions. Out of 16 peptides syn-

thesized so far, only one peptide was not found to be

amyloidogenic (V. A. Iconomidou and S. J. Hamodra-

kas, unpublished data).

A number of amyloidogenic proteins related to

human diseases that accumulate as insoluble IBs when

synthesized recombinantly in bacteria have already

been tested (Table 2 of [41] and references therein).

Most of these proteins are included in Table S1. This

suggests the exciting possibility of performing in silico

(producing suitably designed variants, especially in the

aggregation-prone ⁄ amyloidogenic regions) combined

with in vivo (suitably engineered variants in bacterial

cell factories) experiments for the detailed study of

amyloid aggregation in various amyloidoses. Further-

more, the introduction of aggregation-disrupting

amino acid substitutions in the aggregation-

prone ⁄ amyloidogenic short sequence regions suggests

the possibility of fine-tuning and controlling the solu-

bility of proteins, synthesized by recombinant technol-

ogy in bacterial cell factories. An example of how this

can be accomplished, utilizing prediction algorithms as

a first, guiding step, is given in Fig. 3. Furthermore, in

Fig. 3, it is indicated how this procedure can be used

for the synthesis of peptides, possible potent ‘anti-

amyloid’ drugs, in association with recent findings.

A

B

Fig. 3. A schematic example of how protein aggregation and amy-

loid fibril formation prediction software might be used for fine-tun-

ing and control of protein solubility in bacterial IBs is shown. (A)

The amino acid sequence of the 37 amino acid human islet amyloid

polypeptide hormone (IAPP, amylin), a peptide forming amyloid-like

fibrils, probably associated with a well-known amyloidosis, diabetes

type II [1,2,4], is shown. Predicted amyloidogenic determinants by

AMYLPRED [31] are marked by # below the sequence (see also

Table S1 and references therein). This protein is known to accumu-

late as insoluble IBs when attempts are made for its synthesis, rec-

ombinantly, in bacteria ([41] and references therein). (B) Performing

two single amino acid substitutions in the IAPP sequence (V17G

and F23G, arrows), the AMYLPRED output suggests that the protein

has ‘lost’ two, crucial, amyloidogenic determinants ⁄ ’aggregation-

prone’ short peptides (compare with (A) above) and may therefore

be soluble, not forming IBs. Thinking along similar lines may lead to

the synthesis of peptides, potent ‘anti-amyloid’ drugs. Recently, a

synthetic analogue of human amylin with proline (P) substitutions

at positions 25, 28 and 29 (brand name Symlin or pramlintide), was

approved for adult use in patients with diabetes mellitus types I

and II, knowing that rat and mice amylin, which are not amyloido-

genic, have similar substitutions at these positions [43]. Pramlintide

(positively charged) is delivered as an acetate salt.
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The testing of ‘anti-amyloid’ drugs that would prevent

the formation of bacterial IBs in bacterial cell cultures

should also not be excluded. These views are further

discussed in detail by Garcı́a-Fruitós et al. in this ser-

ies, and also in [41].
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